Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bio Protoc ; 12(6): e4361, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35434184

RESUMO

As a model to interrogate human macrophage biology, macrophages differentiated from human induced pluripotent stem cells (hiPSCs) transcend other existing models by circumventing the variability seen in human monocyte-derived macrophages, whilst epitomizing macrophage phenotypic and functional characteristics over those offered by macrophage-like cell lines ( Mukherjee et al., 2018 ). Furthermore, hiPSCs are amenable to genetic manipulation, unlike human monocyte-derived macrophages (MDMs) (van Wilgenburg et al., 2013 ; Lopez- Yrigoyen et al., 2020 ), proposing boundless opportunities for specific disease modelling. We outline an effective and efficient protocol that delivers a continual production of hiPSC-derived-macrophages (iMACs), exhibiting human macrophage surface and intracellular markers, together with functional activity. The protocol describes the resuscitation, culture, and differentiation of hiPSC into mature terminal macrophages, via the initial and intermediate steps of expansion of hiPSCs, formation into embryoid bodies (EBs), and generation of hematopoietic myeloid precursors. We offer a simplified, scalable, and adaptable technique that advances upon other protocols, utilizing feeder-free conditions and reduced growth factors, to produce high yields of consistent iMACs over a period of several months, economically.

2.
Sci Rep ; 10(1): 10799, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32612269

RESUMO

Ovarian cancer remains a significant challenge in women worldwide. Tumors of the high-grade serous carcinoma (HGSC) type represent the most common form of the disease. Development of new therapies for HGSC has been hampered by a paucity of preclinical models in which new drugs could be tested for target engagement and anti-tumor efficacy. Here, we systematically assessed in vivo growth of ovarian cancer cells, including six validated HGSC cell lines, in highly immunocompromised NSG mice by varying the injection site. We found that, with the exception of OVCAR3, HGSC cell lines COV318, COV362, KURAMOCHI, OVCAR4, and OVSAHO, generally demonstrate poor growth as either subcutaneous or intraperitoneal xenografts. Intrabursal injections performed with KURAMOCHI and COV362 cells did not improve tumor growth in vivo. Additional analysis revealed that OVSAHO and COV362 express moderate levels of estrogen receptor (ERα), which translated into improved growth of xenografts in the presence of 17ß-Estradiol. Surprisingly, we also found that the growth of the widely used non-HGSC ovarian cell line SKOV3 could be significantly improved by estrogen supplementation. By describing successful establishment of estrogen-sensitive HGSC xenograft models, OVSAHO and COV362, this work will enable testing of novel therapies for this aggressive form of ovarian cancer.


Assuntos
Cistadenocarcinoma Seroso/metabolismo , Estradiol/metabolismo , Hospedeiro Imunocomprometido , Neoplasias Experimentais/metabolismo , Neoplasias Ovarianas/metabolismo , Animais , Cistadenocarcinoma Seroso/patologia , Feminino , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , Neoplasias Experimentais/patologia , Neoplasias Ovarianas/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa