Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 589(7842): 396-401, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33473229

RESUMO

The water-gas shift (WGS) reaction is an industrially important source of pure hydrogen (H2) at the expense of carbon monoxide and water1,2. This reaction is of interest for fuel-cell applications, but requires WGS catalysts that are durable and highly active at low temperatures3. Here we demonstrate that the structure (Pt1-Ptn)/α-MoC, where isolated platinum atoms (Pt1) and subnanometre platinum clusters (Ptn) are stabilized on α-molybdenum carbide (α-MoC), catalyses the WGS reaction even at 313 kelvin, with a hydrogen-production pathway involving direct carbon monoxide dissociation identified. We find that it is critical to crowd the α-MoC surface with Pt1 and Ptn species, which prevents oxidation of the support that would cause catalyst deactivation, as seen with gold/α-MoC (ref. 4), and gives our system high stability and a high metal-normalized turnover number of 4,300,000 moles of hydrogen per mole of platinum. We anticipate that the strategy demonstrated here will be pivotal for the design of highly active and stable catalysts for effective activation of important molecules such as water and carbon monoxide for energy production.

2.
Acc Chem Res ; 57(1): 23-36, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38099741

RESUMO

ConspectusMethane complete oxidation is an important reaction that is part of the general scheme used for removing pollutants contained in emissions from internal combustion engines and, more generally, combustion processes. It has also recently attracted interest as an option for the removal of atmospheric methane in the context of negative emission technologies. Methane, a powerful greenhouse gas, can be converted to carbon dioxide and water via its complete oxidation. Despite burning methane being facile because the combustion sustains its complete oxidation after ignition, methane strong C-H bonds require a catalyst to perform the oxidation at low temperatures and in the absence of a flame so as to avoid the formation of nitrogen oxides, such as those produced in flares. This process allows methane removal to be obtained under conditions that usually lead to higher emissions, such as under cold start conditions in the case of internal combustion engines. Among several options that include homo- and heterogeneous catalysts, supported palladium-based catalysts are the most active heterogeneous systems for this reaction. Finely divided palladium can activate C-H bonds at temperatures as low as 150 °C, although complete conversion is usually not reached until 400-500 °C in practical applications. Major goals are to achieve catalytic methane oxidation at as low as possible temperature and to utilize this expensive metal more efficiently.Compared to any other transition metal, palladium and its oxides are orders of magnitude more reactive for methane oxidation in the absence of water. During the last few decades, much research has been devoted to unveiling the origin of the high activity of supported palladium catalysts, their active phase, the effect of support, promoters, and defects, and the effect of reaction conditions with the goal of further improving their reactivity. There is an overall agreement in trends, yet there are noticeable differences in some details of the catalytic performance of palladium, including the active phase under reaction conditions and the reasons for catalyst deactivation and poisoning. In this Account we summarize our work in this space using well-defined catalysts, especially model palladium surfaces and those prepared using colloidal nanocrystals as precursors, and spectroscopic tools to unveil important details about the chemistry of supported palladium catalysts. We describe advanced techniques aimed at elucidating the role of several parameters in the performance of palladium catalysts for methane oxidation as well as in engineering catalysts through advancing fundamental understanding and synthesis methods. We report the state of research on active phases and sites, then move to the role of supports and promoters, and finally discuss stability in catalytic performance and the role of water in the palladium active phase. Overall, we want to emphasize the importance of a fundamental understanding in designing and realizing active and stable palladium-based catalysts for methane oxidation as an example for a variety of energy and environmental applications of nanomaterials in catalysis.

3.
Acc Chem Res ; 55(24): 3641-3651, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36472357

RESUMO

surface is covered by oceans, a large number of liquid aerosol particles fill the air, and clouds hold a tiny but critical fraction of Earth's water in the air to influence our climate and hydrology, enabling the lives of humans and ecosystems. The surfaces of these liquids provide the interface for the transfer of gases, for nucleation processes, and for catalyzing important chemical reactions. Coupling a range of spectroscopic tools to liquid microjets has become an important approach to better understanding dynamics, structure, and chemistry at liquid interfaces. Liquid microjets offer stability in vacuum and ambient pressure environments, thus also allowing X-ray photoelectron spectroscopy (XPS) with manageable efforts in terms of differential pumping. Liquid microjets are operated at speeds sufficient to allow for a locally equilibrated surface in terms of water dynamics and solute surface partitioning. XPS is based on the emission of core-level electrons, the binding energy of which is selective for the element and its chemical environment. Inelastic scattering of electrons establishes the probing depth of XPS in the nanometer range and thus its surface sensitivity.In this Account, we focus on aqueous solutions relevant to the surface of oceans, aqueous aerosols, or cloudwater. We are interested in understanding solvation and acid dissociation at the interface, interfacial aspects of reactions with gas-phase reactants, and the interplay of ions with organic molecules at the interface. The strategy is to obtain a link between the molecular-level picture and macroscopic properties and reactivity in the atmospheric context.We show consistency between surface tension and XPS for a range of surface-active organic species as an important proof for interrogating an equilibrated liquid surface. Measurements with organic acids and amines offer important insight into the question of apparent acidity or basicity at the interface. Liquid microjet XPS has settled the debate of the surface enhancement of halide ions, shown using the example of bromide and its oxidation products. Despite the absence of a strong enhancement for the bromide ion, its rate of oxidation by ozone is surface catalyzed through the stabilization of the bromide ozonide intermediate at the interface. In another reaction system, the one between Fe2+ and H2O2, a similar intermediate in the form of highly valent iron species could not be detected by XPS under the experimental conditions employed, shedding light on the abundance of this intermediate in the environment but also on the constraints within which surface species can be detected. Emphasizing the importance of electrostatic effects, we show how a cationic surfactant attracts charged bromide anions to the interface, accompanied by enhanced oxidation rates by ozone, overriding the role of surfactants as a barrier for the access of gas-phase reactants. The reactivity and structure at interfaces thus result from a subtle balance between hygroscopic and hydrophobic interactions, electrostatic effects, and the structural properties of both liquids and solutes.


Assuntos
Brometos , Ozônio , Humanos , Ecossistema , Peróxido de Hidrogênio , Água/química
4.
Chemistry ; 29(38): e202300939, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37144431

RESUMO

The tandem hydroformylation-aldol condensation (tandem HF-AC) reaction offers an efficient synthetic route to the synthesis of industrially relevant products. The addition of Zn-MOF-74 to the cobalt-catalyzed hydroformylation of 1-hexene enables tandem HF-AC under milder pressure and temperature conditions than the aldox process, where zinc salts are added to cobalt-catalyzed hydroformylation reactions to promote aldol condensation. The yield of the aldol condensation products increases by up to 17 times compared to that of the homogeneous reaction without MOF and up to 5 times compared to the aldox catalytic system. Both Co2 (CO)8 and Zn-MOF-74 are required to significantly enhance the activity of the catalytic system. Density functional theory simulations and Fourier-transform infrared experiments show that heptanal, the product of hydroformylation, adsorbs on the open metal site (OMS) of Zn-MOF-74, thereby increasing the electrophilic character of the carbonyl carbon atom and facilitating the condensation.


Assuntos
Cobalto , Propilaminas , Zinco
5.
J Synchrotron Radiat ; 26(Pt 3): 785-792, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31074443

RESUMO

The successful design, installation and operation of a high spatial resolution X-ray photoelectron spectrometer at the Swiss Light Source is presented. In this instrument, a Fresnel zone plate is used to focus an X-ray beam onto the sample and an electron analyzer positioned at 45° with respect to the incoming beam direction is used to collect photoelectrons from the backside of the sample. By raster scanning the sample, transmitted current, X-ray absorption and X-ray photoemission maps can be simultaneously acquired. This work demonstrates that chemical information can be extracted with micrometre resolution; the results suggest that a spatial resolution better than 100 nm can be achieved with this approach in future. This kind of photoelectron spectromicroscope will allow in situ measurements with high spatial resolution also under ambient pressure conditions (in the millibar range). Element-specific X-ray photoemission maps can be obtained before and while exposing the sample to gas/gas mixtures to show morphological and chemical changes of the surface.

6.
Chemistry ; 25(69): 15879-15886, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31553090

RESUMO

Hollow ZSM-5 zeolites of size below one micrometer can be produced by desilication of crystals with aluminium zoning. The parent crystals have a core-shell structure: the core part has nearly no aluminium, whereas the aluminium content in the shell increases when extending to exterior surface. Transmission electron microscopy confirmed the preservation of the crystalline shell after base leaching, but could not identify its subtle change. An increase of the Si/Al ratio of the surface was detected upon leaching the parent material to form the hollow zeolite by using ambient pressure X-ray photoelectron spectroscopy and infrared spectroscopy of substituted alkylpyridines. 27 Al MAS NMR showed that base leaching results in a reduced percentage of distorted tetrahedrally coordinated aluminium. The reprecipitation of dissolved species occurs and tetrahedrally coordinated tin atoms can thus be introduced to the shell framework. Overall, the formation of hollow ZSM-5 zeolites by desilication involves not only the removal of silicon-rich core, but also a reduced percentage of exterior aluminium-related acid sites, which should be considered while using hollow zeolites in acid-catalyzed reactions.

7.
Phys Chem Chem Phys ; 20(37): 24408-24417, 2018 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-30221299

RESUMO

Interactions between trace gases and ice are important in environmental chemistry and for Earth's climate. In particular, the adsorption of trace gases to ice surfaces at temperatures approaching the melting point has raised interest in the past, because of the prevailing pre-melting. Here, we present Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy data at ambient partial pressure of water to better define the onset temperature of pre-melting at the interfacial region of ice. Further, this study directly compares the interaction between an organic acid common in the atmosphere, formic acid, and that of an aliphatic carbon with ice at 253 K. It makes use of X-ray Photoelectron Spectroscopy (XPS) with its inherent narrow probing depth covering both the surface and near-surface bulk region when detecting electrons. We use the tender X-ray range for excitation to locate the organic species within the interfacial region with an extended probing depth compared to published XPS work. Electron kinetic energy dependent C1s photoemission data indicate that, at low coverage of a few 1014 molecules cm-2, the presence of formic acid is restricted to the upper ice layers of the interfacial region. Increasing the dosage, formic acid penetrates 6-7 nm into the air-ice interface. The presence of the more hydrophobic aliphatic carbon is restricted to the upper ice monolayers. This direct comparison of an organic acid with an aliphatic compound confirms the emerging picture where solutes enter the interfacial region of ice at a depth related to their specific tendency to form solvation shells.

8.
J Phys Chem A ; 120(49): 9749-9758, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27973794

RESUMO

The liquid-vapor interface is playing an important role in aerosol and cloud chemistry in cloud droplet activation by aerosol particles and potentially also in ice nucleation. We have employed the surface sensitive and chemically selective X-ray photoelectron spectroscopy (XPS) technique to examine the liquid-vapor interface for mixtures of water and small alcohols or small carboxylic acids (C1 to C4), abundant chemicals in the atmosphere in concentration ranges relevant for cloud chemistry or aerosol particles at the point of activation into a cloud droplet. A linear correlation was found between the headgroup carbon 1s core-level signal intensity and the surface excess derived from literature surface tension data with the offset being explained by the bulk contribution to the photoemission signal. The relative interfacial enhancement of the carboxylic acids over the carboxylates at the same bulk concentration was found to be highest (nearly 20) for propionic acid/propionate and still about 5 for formic acid/formate, also in fair agreement with surface tension measurements. This provides direct spectroscopic evidence for high carboxylic acid concentrations at aqueous solution-air interfaces that may be responsible for acid catalyzed chemistry under moderately acidic conditions with respect to their bulk aqueous phase acidity constant. By assessing the ratio of aliphatic to headgroup C 1s signal intensities XPS also provides information about the orientation of the molecules. The results indicate an increasing orientation of alcohols and neutral acids toward the surface normal as a function of chain length, along with increasing importance of lateral hydrophobic interactions at higher surface coverage. In turn, the carboxylate ions exhibit stronger orientation toward the surface normal than the corresponding neutral acids, likely caused by the stronger hydration of the charged headgroup.

9.
Phys Chem Chem Phys ; 17(27): 18055-62, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26099576

RESUMO

The structure and thermal evolution of Fe nanoparticles deposited on a wetting TiOx ultrathin film epitaxially grown on Pt(111) has been characterized by various surface science techniques. Combining the results obtained it is shown that, at room temperature, metallic Fe nucleates randomly and oxidizes at the interface. A thermal treatment causes Fe migration through the TiOx layer, forming a mixed oxide and a new hexagonal ultrathin film phase. Finally, the pristine TiOx phase motif is restored, due to the complete diffusion of Fe into the Pt substrate.

10.
ACS Catal ; 14(13): 10234-10244, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38988650

RESUMO

The epoxidation of ethylene stands as one of the most important industrial catalytic reactions, and silver-based catalysts show superior activity and selectivity. Oxygen is activated on the surface of silver during the reaction and exerts a substantial impact on product selectivity. Notably, the oxygen species residing in the topmost atomic layers profoundly influence the reactivity of a catalyst. However, their characterization under in situ reaction conditions remains a huge challenge, and specific structures have not been identified yet. In this study, we employ in situ X-ray photoelectron spectroscopy and density functional theory calculations to determine the oxygen species formed at the topmost atomic layers of a silver foil and to assign them a structure. Three different groups of oxygen species activated on silver are identified: (i) surface lattice oxygen and two oxygen species originating from associatively adsorbed dioxygen and (ii) top and (iii) subsurface oxygen. Transient in situ photoelectron spectroscopy experiments are carried out to reveal the dynamic evolution and thus reactivity of the different oxygen species under ethylene epoxidation reaction environments. The top oxygen atom from the adsorbed associated dioxygen is the most active. Meanwhile, a frequency-selective data analysis method, developed to process time-resolved data, provides insights into the evolving trends of peak intensities for different oxygen species. The versatility of this method suggests its potential application in future time-resolved characterization studies.

11.
Nat Commun ; 15(1): 445, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200016

RESUMO

Plasmonic systems convert light into electrical charges and heat, mediating catalytic transformations. However, there is ongoing controversy regarding the involvement of hot carriers in the catalytic process. In this study, we demonstrate the direct utilisation of plasmon hot electrons in the hydrogen evolution reaction with visible light. We intentionally assemble a plasmonic nanohybrid system comprising NiO/Au/[Co(1,10-Phenanthrolin-5-amine)2(H2O)2], which is unstable at water thermolysis temperatures. This assembly limits the plasmon thermal contribution while ensuring that hot carriers are the primary contributors to the catalytic process. By combining photoelectrocatalysis with advanced in situ spectroscopies, we can substantiate a reaction mechanism in which plasmon-induced hot electrons play a crucial role. These plasmonic hot electrons are directed into phenanthroline ligands, facilitating the rapid, concerted proton-electron transfer steps essential for hydrogen generation. The catalytic response to light modulation aligns with the distinctive profile of a hot carrier-mediated process, featuring a positive, though non-essential, heat contribution.

12.
J Am Chem Soc ; 135(46): 17331-8, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24160738

RESUMO

We have grown highly controlled VOx nanoclusters on rutile TiO2(110). The combination of photoemission and photoelectron diffraction techniques based on synchrotron radiation with DFT calculations has allowed identifying these nanostructures as exotic V4O6 nanoclusters, which hold vanadyl groups, even if vanadium oxidation state is formally +3. Our theoretical investigation also indicates that on the surface of titania, vanadia mononuclear species, with oxidation states ranging from +2 to +4, can be strongly stabilized by aggregation into tetramers that are characterized by a charge transfer to the titania substrate and a consequent decrease of the electron density in the vanadium 3d levels. We then performed temperature programmed desorption experiments using methanol as probe molecule to understand the impact of these unusual electronic and structural properties on the chemical reactivity, obtaining that the V4O6 nanoclusters can selectively convert methanol to formaldehyde at an unprecedented low temperature (300 K).

13.
J Phys Chem Lett ; 14(26): 6151-6156, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37382368

RESUMO

Gas-particle interfaces are chemically active environments. This study investigates the reactivity of SO2 on NaCl surfaces using advanced experimental and theoretical methods with a NH4Cl substrate also examined for cation effects. Results show that NaCl surfaces rapidly convert to Na2SO4 with a new chlorine component when exposed to SO2 under low humidity. In contrast, NH4Cl surfaces have limited SO2 uptake and do not change significantly. Depth profiles reveal transformed layers and elemental ratios at the crystal surfaces. The chlorine species detected originates from Cl- expelled from the NaCl crystal structure, as determined by atomistic density functional theory calculations. Molecular dynamics simulations highlight the chemically active NaCl surface environment, driven by a strong interfacial electric field and the presence of sub-monolayer water coverage. These findings underscore the chemical activity of salt surfaces and the unexpected chemistry that arises from their interaction with interfacial water, even under very dry conditions.

14.
Environ Sci Atmos ; 2(6): 1277-1291, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36561553

RESUMO

Resorcinol and orcinol are simple members of the family of phenolic compounds present in particulate matter in the atmosphere; they are amphiphilic in nature and thus surface active in aqueous solution. Here, we used X-ray photoelectron spectroscopy to probe the concentration of resorcinol (benzene-1,3-diol) and orcinol (5-methylbenzene-1,3-diol) at the liquid-vapor interface of aqueous solutions. Qualitatively consistent surface propensity and preferential orientation was obtained by molecular dynamics simulations. Auger electron yield near-edge X-ray absorption fine structure (NEXAFS) spectroscopy was used to probe the hydrogen bonding (HB) structure, indicating that the local structure of water molecules near the surface of the resorcinol and orcinol solutions tends towards a larger fraction of tetrahedrally coordinated molecules than observed at the liquid-vapor interface of pure water. The order parameter obtained from the molecular dynamics simulations confirm these observations. This effect is being discussed in terms of the formation of an ordered structure of these molecules at the surface leading to patterns of hydrated OH groups with distances among them that are relatively close to those in ice. These results suggest that the self-assembly of phenolic species at the aqueous solution-air interface could induce freezing similar to the case of fatty alcohol monolayers and, thus, be of relevance for ice nucleation in the atmosphere. We also attempted at looking at the changes of the O 1b1, 3a2 and 1b2 molecular orbitals of liquid water, which are known to be sensitive to the HB structure as well, in response to the presence of resorcinol and orcinol. However, these changes remained negligible within uncertainty for both experimentally obtained valence spectra and theoretically calculated density of states.

15.
J Phys Chem Lett ; 13(29): 6681-6682, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35848768

RESUMO

A Viewpoint regarding our recently published Letter in this Journal (Gladich et al. J. Phys. Chem. Lett. 13, 2994-3001) criticizes some of our conclusions. While a sentence in the abstract and one in the conclusion of the Letter might seem too conclusive, in the body text we objectively discussed experimental results obtained by means of three different surface-/interface-sensitive spectroscopies. Such results were supported by theoretical calculations. The aim of our work was not to criticize past results. On the contrary, we critically discussed our data taking into account those obtained in the past.

16.
J Phys Chem Lett ; 13(13): 2994-3001, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35344351

RESUMO

Fenton chemistry, involving the reaction between Fe2+ and hydrogen peroxide, is well-known due to its applications in the mineralization of extremely stable molecules. Different mechanisms, influenced by the reaction conditions and the solvation sphere of iron ions, influence the fate of such reactions. Despite the huge amount of effort spent investigating such processes, a complete understanding is still lacking. This work combines photoelectron spectroscopy and theoretical calculations to investigate the solvation and reactivity of Fe2+ and Fe3+ ions in aqueous solutions. The reaction with hydrogen peroxide, both in homogeneous Fenton reagents and at the liquid-vapor interface, illustrates that both ions are homogeneously distributed in solutions and exhibit an asymmetric octahedral coordination to water in the case of Fe2+. No indications of differences in the reaction mechanism between the liquid-vapor interface and the bulk of the solutions have been found, suggesting that Fe3+ and hydroxyl radicals are the only intermediates.

17.
ACS Nano ; 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36469418

RESUMO

Hydrogen spillover from metal nanoparticles to oxides is an essential process in hydrogenation catalysis and other applications such as hydrogen storage. It is important to understand how far this process is reaching over the surface of the oxide. Here, we present a combination of advanced sample fabrication of a model system and in situ X-ray photoelectron spectroscopy to disentangle local and far-reaching effects of hydrogen spillover in a platinum-ceria catalyst. At low temperatures (25-100 °C and 1 mbar H2) surface O-H formed by hydrogen spillover on the whole ceria surface extending microns away from the platinum, leading to a reduction of Ce4+ to Ce3+. This process and structures were strongly temperature dependent. At temperatures above 150 °C (at 1 mbar H2), O-H partially disappeared from the surface due to its decreasing thermodynamic stability. This resulted in a ceria reoxidation. Higher hydrogen pressures are likely to shift these transition temperatures upward due to the increasing chemical potential. The findings reveal that on a catalyst containing a structure capable to promote spillover, hydrogen can affect the whole catalyst surface and be involved in catalysis and restructuring.

18.
Phys Chem Chem Phys ; 13(38): 17171-6, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21879069

RESUMO

We present experimental and theoretical evidence of sequential redox processes and structural transformations occurring by increasing temperature in a metal/oxide/metal system obtained via deposition of Fe atoms onto a z'-TiO(1.25)/Pt(111) ultrathin film in UHV. The initial reduction of the z'-TiO(x) phase by Fe at room temperature is followed by Fe diffusion and partial penetration into the substrate at intermediate temperatures. This triggers the formation of a bi-component material in which mixed FeO/TiO(2) nanoislands coexist on a h-TiO(1.14) ultrathin film, notably restructured (from rectangular to hexagonal) and reduced (from Ti : O = 1 : 1.25 to 1 : 1.14) with respect to the original TiO(1.25) phase. Further heating recovers the pristine z'-TiO(x) phase while Fe completely dissolves into the substrate.

19.
Science ; 374(6568): 747-752, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34735230

RESUMO

A surface-promoted sulfate-reducing ammonium oxidation reaction was discovered to spontaneously take place on common inorganic aerosol surfaces undergoing solvation. Several key intermediate species­including elemental sulfur (S0), bisulfide (HS−), nitrous acid (HONO), and aqueous ammonia [NH3(aq)]­were identified as reaction components associated with the solvation process. Depth profiles of relative species abundance showed the surface propensity of key species. The species assignments and depth profile features were supported by classical and first-principles molecular dynamics calculations, and a detailed mechanism was proposed to describe the processes that led to unexpected products during salt solvation. This discovery revealed chemistry that is distinctly linked to a solvating surface and has great potential to illuminate current puzzles within heterogeneous chemistry.

20.
ACS Earth Space Chem ; 5(11): 3008-3021, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34825122

RESUMO

The reaction of ozone with sea-salt derived bromide is relevant for marine boundary layer atmospheric chemistry. The oxidation of bromide by ozone is enhanced at aqueous interfaces. Ocean surface water and sea spray aerosol are enriched in organic compounds, which may also have a significant effect on this reaction at the interface. Here, we assess the surface propensity of cationic tetrabutylammonium at the aqueous liquid-vapor interface by liquid microjet X-ray photoelectron spectroscopy (XPS) and the effect of this surfactant on ozone uptake to aqueous bromide solutions. The results clearly indicate that the positively charged nitrogen group in tetrabutylammonium (TBA), along with its surface activity, leads to an enhanced interfacial concentration of both bromide and the bromide ozonide reaction intermediate. In parallel, off-line kinetic experiments for the same system demonstrate a strongly enhanced ozone loss rate in the presence of TBA, which is attributed to an enhanced surface reaction rate. We used liquid jet XPS to obtain detailed chemical composition information from the aqueous-solution-vapor interface of mixed aqueous solutions containing bromide or bromide and chloride with and without TBA surfactant. Core level spectra of Br 3d, C 1s, Cl 2p, N 1s, and O 1s were used for this comparison. A model was developed to account for the attenuation of photoelectrons by the carbon-rich layer established by the TBA surfactant. We observed that the interfacial density of bromide is increased by an order of magnitude in solutions with TBA. The salting-out of TBA in the presence of 0.55 M sodium chloride is apparent. The increased interfacial bromide density can be rationalized by the association constants for bromide and chloride to form ion-pairs with TBA. Still, the interfacial reactivity is not increasing simply proportionally with the increasing interfacial bromide concentration in response to the presence of TBA. The steady state concentration of the bromide ozonide intermediate increases by a smaller degree, and the lifetime of the intermediate is 1 order of magnitude longer in the presence of TBA. Thus, the influence of cationic surfactants on the reactivity of bromide depends on the details of the complex environment at the interface.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa