Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Lipid Res ; 54(2): 522-34, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23175776

RESUMO

Intramuscular accumulation of triacylglycerol, in the form of lipid droplets (LD), has gained widespread attention as a hallmark of metabolic disease and insulin resistance. Paradoxically, LDs also amass in muscles of highly trained endurance athletes who are exquisitely insulin sensitive. Understanding the molecular mechanisms that mediate the expansion and appropriate metabolic control of LDs in the context of habitual physical activity could lead to new therapeutic opportunities. Herein, we show that acute exercise elicits robust upregulation of a broad program of genes involved in regulating LD assembly, morphology, localization, and mobilization. Prominent among these was perilipin-5, a scaffolding protein that affects the spatial and metabolic interactions between LD and their surrounding mitochondrial reticulum. Studies in transgenic mice and primary human skeletal myocytes established a key role for the exercise-responsive transcriptional coactivator PGC-1α in coordinating intramuscular LD programming with mitochondrial remodeling. Moreover, translational studies comparing physically active versus inactive humans identified a remarkably strong association between expression of intramuscular LD genes and enhanced insulin action in exercise-trained subjects. These results reveal an intimate molecular connection between intramuscular LD biology and mitochondrial metabolism that could prove relevant to the etiology and treatment of insulin resistance and other disorders of lipid imbalance.


Assuntos
Exercício Físico , Proteínas de Choque Térmico/metabolismo , Metabolismo dos Lipídeos , Músculo Esquelético/citologia , Organelas/metabolismo , Condicionamento Físico Animal , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Feminino , Regulação da Expressão Gênica , Proteínas de Choque Térmico/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Transativadores/genética , Fatores de Transcrição/genética , Triglicerídeos/metabolismo , Adulto Jovem
2.
Mol Genet Metab ; 109(2): 161-70, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23623482

RESUMO

Glycogen Storage Disease type Ia (GSD-Ia) in humans frequently causes delayed bone maturation, decrease in final adult height, and decreased growth velocity. This study evaluates the pathogenesis of growth failure and the effect of gene therapy on growth in GSD-Ia affected dogs and mice. Here we found that homozygous G6pase (-/-) mice with GSD-Ia have normal growth hormone (GH) levels in response to hypoglycemia, decreased insulin-like growth factor (IGF) 1 levels, and attenuated weight gain following administration of GH. Expression of hepatic GH receptor and IGF 1 mRNAs and hepatic STAT5 (phospho Y694) protein levels are reduced prior to and after GH administration, indicating GH resistance. However, restoration of G6Pase expression in the liver by treatment with adeno-associated virus 8 pseudotyped vector expressing G6Pase (AAV2/8-G6Pase) corrected body weight, but failed to normalize plasma IGF 1 in G6pase (-/-) mice. Untreated G6pase (-/-) mice also demonstrated severe delay of growth plate ossification at 12 days of age; those treated with AAV2/8-G6Pase at 14 days of age demonstrated skeletal dysplasia and limb shortening when analyzed radiographically at 6 months of age, in spite of apparent metabolic correction. Moreover, gene therapy with AAV2/9-G6Pase only partially corrected growth in GSD-Ia affected dogs as detected by weight and bone measurements and serum IGF 1 concentrations were persistently low in treated dogs. We also found that heterozygous GSD-Ia carrier dogs had decreased serum IGF 1, adult body weights and bone dimensions compared to wild-type littermates. In sum, these findings suggest that growth failure in GSD-Ia results, at least in part, from hepatic GH resistance. In addition, gene therapy improved growth in addition to promoting long-term survival in dogs and mice with GSD-Ia.


Assuntos
Terapia Genética , Glucose-6-Fosfatase/genética , Doença de Depósito de Glicogênio Tipo I/fisiopatologia , Animais , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Osso e Ossos/fisiopatologia , Cães , Feminino , Glicogênio/metabolismo , Doença de Depósito de Glicogênio Tipo I/sangue , Doença de Depósito de Glicogênio Tipo I/terapia , Hormônio do Crescimento/sangue , Fator de Crescimento Insulin-Like I/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Osteogênese , Radiografia
3.
Reproduction ; 140(1): 113-21, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20453159

RESUMO

Postnatal Leydig cell (LC) development in mice has been assumed empirically to resemble that of rats, which have characteristic hormonal profiles at well-defined maturational stages. To characterize the changes in LC function and gene expression in mice, we examined reproductive hormone expression from birth to 180 days, and quantified in vivo and in vitro production of androgens during sexual maturation. Although the overall plasma androgen and LH profiles from birth through puberty were comparable to that of rats, the timing of developmental changes in androgen production and steroidogenic capacity of isolated LCs differed. In mice, onset of androgen biosynthetic capacity, distinguished by an acute rise in androstenedione and testosterone production and an increased expression of the steroidogenic enzymes, cytochrome P450 cholesterol side-chain cleavage enzyme and 17alpha-hydroxylase, occurred at day 24 (d24) rather than at d21 as reported in rats. Moreover, in contrast to persistently high testosterone production by pubertal and adult rat LCs, testosterone production was maximal at d45 in mice, and then declined in mature LCs. The murine LCs also respond more robustly to LH stimulation, with a greater increment in LH-stimulated testosterone production. Collectively, these data suggest that the mouse LC lineage has a delayed onset, and that it has an accelerated pace of maturation compared with the rat LC lineage. Across comparable maturational stages, LCs exhibit species-specific developmental changes in enzyme expression and capacity for androgen production. Our results demonstrate distinct differences in LC differentiation between mice and rats, and provide informative data for assessing reproductive phenotypes of recombinant mouse models.


Assuntos
Androgênios/metabolismo , Células Intersticiais do Testículo/metabolismo , Hormônio Luteinizante/farmacologia , Maturidade Sexual/fisiologia , Testículo/citologia , Testículo/crescimento & desenvolvimento , Envelhecimento/fisiologia , Androgênios/biossíntese , Animais , Northern Blotting , Diferenciação Celular/fisiologia , Separação Celular , Feminino , Imuno-Histoquímica , Células Intersticiais do Testículo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Gravidez , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esteroides/biossíntese , Estimulação Química , Testículo/metabolismo
4.
Steroids ; 74(1): 121-31, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18992267

RESUMO

A synthetic androgen 7alpha-Methyl-19-nortestosterone (MENT) has a potential for therapeutic use in 'androgen replacement therapy' for hypogonadal men or as a hormonal male-contraceptive in normal men. Its tissue distribution, excretion and metabolic enzyme(s) have not been reported. Therefore, the present study tested the distribution and excretion of MENT in Sprague-Dawley rats castrated 24h prior to the injection of tritium-labeled MENT ((3)H-MENT). Rats were euthanized at different time intervals after dosing, and the amount of radioactivity in various tissues/organs was measured following combustion in a Packard oxidizer. The radioactivity (% injected dose) was highest in the duodenal contents in the first 30min of injection. Specific uptake of the steroid was observed in target tissues such as ventral prostate and seminal vesicles at 6h, while in other tissues radioactivity equilibrated with blood. Liver and duodenum maintained high radioactivity throughout, as these organs were actively involved in the metabolism and excretion of most drugs. The excretion of (3)H-MENT was investigated after subcutaneous injection of (3)H-MENT into male rats housed in metabolic cages. Urine and feces were collected at different time intervals (up to 72h) following injection. Results showed that the radioactivity was excreted via feces and urine in equal amounts by 30h. Aiming to identify enzyme(s) involved in the MENT metabolism, we performed in vitro metabolism of (3)H-MENT using rat and human liver microsomes, cytosol and recombinant cytochrome P(450) (CYP) isozymes. The metabolites were separated by thin-layer chromatography (TLC). Three putative metabolites (in accordance with the report of Agarwal and Monder [Agarwal AK, Monder C. In vitro metabolism of 7alpha-methyl-19-nortestosterone by rat liver, prostate, and epididymis. Endocrinology 1988;123:2187-93]), [i] 3-hydroxylated MENT by both rat and human liver cytosol; [ii] 16alpha-hydroxylated MENT (a polar metabolite) by both rat and human hepatic microsomes; and [iii] 7alpha-methyl-19-norandrostenedione (a non-polar metabolite) by human hepatic microsomes, were obtained. By employing chemical inhibitors and specific anti-CYP antibodies, (3)H-MENT was found to be metabolized specifically by rat CYP 2C11 and 3-hydroxysteroid dehydrogenase (3-HSD) enzymes whereas in humans it was accomplished by CYP 3A4, 17beta-hydroxysteroid dehydrogenase (17beta-HSD) and 3-HSD enzymes.


Assuntos
Anticoncepcionais Masculinos/farmacocinética , Nandrolona/análogos & derivados , Animais , Anticoncepcionais Hormonais Pós-Coito/farmacocinética , Humanos , Masculino , Microssomos Hepáticos/metabolismo , Nandrolona/farmacocinética , Especificidade de Órgãos , Ratos , Ratos Sprague-Dawley
5.
JCI Insight ; 4(6)2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30777938

RESUMO

Bariatric surgeries including vertical sleeve gastrectomy (VSG) ameliorate obesity and diabetes. Weight loss and accompanying increases to insulin sensitivity contribute to improved glycemia after surgery; however, studies in humans also suggest weight-independent actions of bariatric procedures to lower blood glucose, possibly by improving insulin secretion. To evaluate this hypothesis, we compared VSG-operated mice with pair-fed, sham-surgical controls (PF-Sham) 2 weeks after surgery. This paradigm yielded similar postoperative body weight and insulin sensitivity between VSG and calorically restricted PF-Sham animals. However, VSG improved glucose tolerance and markedly enhanced insulin secretion during oral nutrient and i.p. glucose challenges compared with controls. Islets from VSG mice displayed a unique transcriptional signature enriched for genes involved in Ca2+ signaling and insulin secretion pathways. This finding suggests that bariatric surgery leads to intrinsic changes within the islet that alter function. Indeed, islets isolated from VSG mice had increased glucose-stimulated insulin secretion and a left-shifted glucose sensitivity curve compared with islets from PF-Sham mice. Isolated islets from VSG animals showed corresponding increases in the pulse duration of glucose-stimulated Ca2+ oscillations. Together, these findings demonstrate a weight-independent improvement in glycemic control following VSG, which is, in part, driven by improved insulin secretion and associated with substantial changes in islet gene expression. These results support a model in which ß cells play a key role in the adaptation to bariatric surgery and the improved glucose tolerance that is typical of these procedures.


Assuntos
Cirurgia Bariátrica/métodos , Peso Corporal , Gastrectomia/métodos , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Animais , Glicemia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Teste de Tolerância a Glucose , Humanos , Insulina/metabolismo , Resistência à Insulina , Camundongos , Camundongos Endogâmicos C57BL , Obesidade , Redução de Peso
6.
Endocrinology ; 149(11): 5401-14, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18599550

RESUMO

Carbohydrate metabolism in pregnancy reflects the balance between counterregulatory hormones, which induce insulin resistance, and lactogenic hormones, which stimulate beta-cell proliferation and insulin production. Here we explored the interactions of prolactin (PRL) and glucocorticoids in the regulation of beta-cell gene expression, fatty acid oxidation, and glucose-stimulated insulin secretion (GSIS). In rat insulinoma cells, rat PRL caused 30-50% (P < 0.001) reductions in Forkhead box O (FoxO)-1, peroxisome proliferator activator receptor (PPAR)-gamma coactivator-1alpha (PGC-1alpha), PPARalpha, and carnitine palmitoyltransferase 1 (CPT-1) mRNAs and increased Glut-2 mRNA and GSIS; conversely, dexamethasone (DEX) up-regulated FoxO1, PGC1alpha, PPARalpha, CPT-1, and uncoupling protein 2 (UCP-2) mRNAs in insulinoma cells and inhibited GSIS. Hydrocortisone had similar effects. The effects of DEX were attenuated by coincubation of cells with PRL. In primary rat islets, PRL reduced FoxO1, PPARalpha, and CPT-1 mRNAs, whereas DEX increased FoxO1, PGC1alpha, and UCP-2 mRNAs. The effects of PRL on gene expression were mimicked by constitutive overexpression of signal transducer and activator of transcription-5b. PRL induced signal transducer and activator of transcription-5 binding to a consensus sequence in the rat FoxO1 promoter, reduced nuclear FoxO1 protein levels, and induced its phosphorylation and cytoplasmic redistribution. DEX increased beta-cell fatty acid oxidation and reduced fatty acid esterification; these effects were attenuated by PRL. Thus, lactogens and glucocorticoids have opposing effects on a number of beta-cell genes including FoxO1, PGC1alpha, PPARalpha, CPT-1, and UCP-2 and differentially regulate beta-cell Glut-2 expression, fatty acid oxidation, and GSIS. These observations suggest new mechanisms by which lactogens may preserve beta-cell mass and function and maternal glucose tolerance despite the doubling of maternal cortisol concentrations in late gestation.


Assuntos
Metabolismo dos Carboidratos/efeitos dos fármacos , Ácidos Graxos/metabolismo , Glucocorticoides/farmacologia , Glucose/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Insulina/metabolismo , Gravidez/metabolismo , Prolactina/farmacologia , Animais , Células Cultivadas , Meios de Cultura Livres de Soro/farmacologia , Dexametasona/farmacologia , Interações Medicamentosas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Oxirredução/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ratos , Fator de Transcrição STAT5/metabolismo
7.
Endocrinology ; 148(1): 258-67, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17023531

RESUMO

Lactogenic hormones stimulate food intake in rodents, ungulates, and birds. To test the hypothesis that lactogens regulate expression of neuropeptides that control appetite, we used the prolactin (PRL)-responsive rat insulinoma (INS-1) cell line as an experimental paradigm. INS-1 cells express mRNA for neuropeptide Y (NPY) and cocaine- and amphetamine-regulated transcript (CART) but little or no agouti-related peptide or proopiomelanocortin. As in the hypothalamus in vivo, the levels of NPY mRNA in INS-1 cells were increased by glucose deprivation. Conversely, high media glucose concentrations (11 mm) reduced the levels of NPY mRNA and increased levels of CART mRNA. Rat PRL stimulated a 4- to 7-fold increase in NPY mRNA in INS-1 cells (P < 0.001) and reduced by 50-80% the levels of CART mRNA (P < 0.001). The effects of PRL on NPY mRNA were time and dose dependent and potentiated by glucose deprivation or exogenous dexamethasone (Dex). Hormonal induction of NPY mRNA was accompanied by increased secretion of NPY peptide into cellular conditioned media. PRL stimulated a 1.8- to 3.5-fold increase in expression of AMP-activated protein kinase (AMPK), which mediates in part the effects of hypoglycemia on NPY expression in the hypothalamus in vivo. Pharmacological inhibition of AMPK activity blunted slightly the effects of PRL on NPY and CART but reversed entirely the effects of Dex or of PRL plus Dex on CART mRNA. The effects of PRL on NPY, CART, and AMPK mRNA were mirrored by those of other lactogens and somatogens including placental lactogen and GH. Rat PRL and rat GH in combination had no additive or synergistic effects, suggesting that lactogenic and somatogenic hormones regulate neuropeptide gene expression through similar mechanisms. We conclude that lactogens act in concert with glucose deprivation and glucocorticoids to induce NPY expression and inhibit CART. We speculate that the lactogens facilitate food intake in response to fasting or nutrient deprivation, when glucose levels decline and cortisol levels rise.


Assuntos
Hormônio do Crescimento/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Proteínas do Tecido Nervoso/genética , Neuropeptídeo Y/genética , Prolactina/farmacologia , Proteínas Quinases Ativadas por AMP , Animais , Linhagem Celular Tumoral , Dexametasona/farmacologia , Interações Medicamentosas , Expressão Gênica/efeitos dos fármacos , Glucocorticoides/farmacologia , Glucose/farmacologia , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/fisiologia , Insulinoma , Complexos Multienzimáticos/antagonistas & inibidores , Complexos Multienzimáticos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeo Y/metabolismo , Neoplasias Pancreáticas , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/metabolismo , Ratos
8.
Endocrinology ; 146(2): 589-95, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15514087

RESUMO

Mullerian inhibiting substance (MIS) causes Mullerian duct regression during sexual differentiation and regulates postnatal Leydig cell development. MIS knockout (MIS-KO) mice with targeted deletions of MIS develop Leydig cell hyperplasia, but their circulating androgen concentrations are reportedly unaltered. We compared reproductive hormone profiles, androgen biosynthesis, and the expression of key steroidogenic and metabolic enzymes in MIS-KO and wild-type (WT) mice at puberty (36 d) and sexual maturity (60 d). In pubertal animals, basal testosterone and LH concentrations in plasma were lower in MIS-KO than WT mice, whereas human chorionic gonadotropin-stimulated testosterone concentrations were similar. In adults, basal LH, and both basal and human chorionic gonadotropin (hCG)-stimulated testosterone concentrations were similar. Purified Leydig cells from pubertal MIS-KO mice had lower testosterone but higher androstanediol and androstenedione production rates. In contrast, testosterone, androstanediol, and androstenedione production rates were all lower in adult MIS-KO Leydig cells. Steroidogenic acute regulatory protein expression was lower in pubertal MIS-KO mice compared with WT, whereas 17beta-hydroxy-steroid dehydrogenase and 5alpha-reductase were greater, and P450c17 and P450scc were similar. The expression of steroidogenic acute regulatory protein and 17beta-hydroxysteroid dehydrogenase was lower in adult MIS-KO mice, whereas that of 5alpha-reductase, P450c17, and P450scc was similar. Collectively, these results suggest that in the absence of MIS, Leydig cells remain less differentiated, causing an altered intratesticular androgen milieu that may contribute to the infertility of MIS-KO mice. In immature mice, this deficit in steroidogenic capacity appears to be mediated by a direct loss of MIS action in Leydig cells as well as by indirect effects via the hypothalamic-pituitary-gonadal axis.


Assuntos
Glicoproteínas/genética , Glicoproteínas/metabolismo , Células Intersticiais do Testículo/fisiologia , Hormônios Testiculares/genética , Hormônios Testiculares/metabolismo , Fatores Etários , Animais , Hormônio Antimülleriano , Peso Corporal , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tamanho do Órgão , Fosfoproteínas/genética , RNA Mensageiro/análise , Maturidade Sexual , Testículo/citologia , Testículo/metabolismo , Testosterona/sangue
9.
Cell Rep ; 13(1): 157-167, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26411681

RESUMO

Pancreatic islet failure, involving loss of glucose-stimulated insulin secretion (GSIS) from islet ß cells, heralds the onset of type 2 diabetes (T2D). To search for mediators of GSIS, we performed metabolomics profiling of the insulinoma cell line 832/13 and uncovered significant glucose-induced changes in purine pathway intermediates, including a decrease in inosine monophosphate (IMP) and an increase in adenylosuccinate (S-AMP), suggesting a regulatory role for the enzyme that links the two metabolites, adenylosuccinate synthase (ADSS). Inhibition of ADSS or a more proximal enzyme in the S-AMP biosynthesis pathway, adenylosuccinate lyase, lowers S-AMP levels and impairs GSIS. Addition of S-AMP to the interior of patch-clamped human ß cells amplifies exocytosis, an effect dependent upon expression of sentrin/SUMO-specific protease 1 (SENP1). S-AMP also overcomes the defect in glucose-induced exocytosis in ß cells from a human donor with T2D. S-AMP is, thus, an insulin secretagogue capable of reversing ß cell dysfunction in T2D.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Diabetes Mellitus Tipo 2/metabolismo , Glucose/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Monofosfato de Adenosina/metabolismo , Monofosfato de Adenosina/farmacologia , Adenilossuccinato Liase/antagonistas & inibidores , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Adenilossuccinato Sintase/antagonistas & inibidores , Adenilossuccinato Sintase/genética , Adenilossuccinato Sintase/metabolismo , Animais , Linhagem Celular Tumoral , Cisteína Endopeptidases , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Endopeptidases/genética , Endopeptidases/metabolismo , Inibidores Enzimáticos/farmacologia , Exocitose/efeitos dos fármacos , Regulação da Expressão Gênica , Glucose/metabolismo , Guanina/farmacologia , Humanos , Inosina Monofosfato/metabolismo , Insulina/biossíntese , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Metaboloma/genética , Ácido Micofenólico/farmacologia , Técnicas de Patch-Clamp , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
10.
Endocrine ; 46(3): 568-76, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24114406

RESUMO

Prolactin (PRL) and placental lactogen stimulate beta cell replication and insulin production in vitro and in vivo. The molecular mechanisms by which lactogens promote beta cell expansion are unclear. We treated rat insulinoma cells with a PRL receptor (PRLR) siRNA to determine if PRLR signaling is required for beta cell DNA synthesis and cell survival and to identify beta cell cycle genes whose expression depends upon lactogen action. Effects of PRLR knockdown were compared with those of PRL treatment. PRLR knockdown (-80 %) reduced DNA synthesis, increased apoptosis, and inhibited expression of cyclins D2 and B2, IRS-2, Tph1, and the anti-apoptotic protein PTTG1; p21 and BCL6 mRNAs increased. Conversely, PRL treatment increased DNA synthesis, reduced apoptosis, and enhanced expression of A, B and D2 cyclins, CDK1, IRS-2, FoxM1, BCLxL, and PTTG1; BCL6 declined. PRLR signaling is required for DNA synthesis and survival of rat insulinoma cells. The effects of lactogens are mediated by down-regulation of cell cycle inhibitors (BCL6, p21) and induction of A, B, and D2 cyclins, IRS-2, Tph1, FoxM1, and the anti-apoptotic proteins BCLxL and PTTG1.


Assuntos
Apoptose/genética , DNA/biossíntese , Expressão Gênica/genética , Células Secretoras de Insulina/metabolismo , Receptores da Prolactina/metabolismo , Animais , Contagem de Células , Linhagem Celular Tumoral , Ciclinas/genética , Ciclinas/metabolismo , DNA/genética , Regulação para Baixo/genética , Células Secretoras de Insulina/patologia , Insulinoma/genética , Insulinoma/metabolismo , Insulinoma/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , RNA Interferente Pequeno , Ratos , Receptores da Prolactina/genética , Transdução de Sinais/genética
11.
Endocrinology ; 152(3): 856-68, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21239441

RESUMO

The mechanisms by which lactogenic hormones promote ß-cell expansion remain poorly understood. Because prolactin (PRL) up-regulates ß-cell glucose transporter 2, glucokinase, and pyruvate dehydrogenase activities, we reasoned that glucose availability might mediate or modulate the effects of PRL on ß-cell mass. Here, we used male rat islets to show that PRL and glucose have differential but complementary effects on the expression of cell cyclins, cell cycle inhibitors, and various other genes known to regulate ß-cell replication, including insulin receptor substrate 2, IGF-II, menin, forkhead box protein M1, tryptophan hydroxylase 1, and the PRL receptor. Differential effects on gene expression are associated with synergistic effects of glucose and PRL on islet DNA synthesis. The effects of PRL on gene expression are mirrored by ß-cell overexpression of signal transducer and activator of transcription 5b and are opposed by dexamethasone. An ad-small interfering RNA specific for cyclin D2 attenuates markedly the effects of PRL on islet DNA synthesis. Our studies suggest a new paradigm for the control of ß-cell mass and insulin production by hormones and nutrients. PRL up-regulates ß-cell glucose uptake and utilization, whereas glucose increases islet PRL receptor expression and potentiates the effects of PRL on cell cycle gene expression and DNA synthesis. These findings suggest novel targets for prevention of neonatal glucose intolerance and gestational diabetes and may provide new insight into the pathogenesis of ß-cell hyperplasia in obese subjects with insulin resistance.


Assuntos
DNA/biossíntese , Regulação da Expressão Gênica/fisiologia , Glucose/farmacologia , Ilhotas Pancreáticas/metabolismo , Prolactina/farmacologia , Animais , Células Cultivadas , Ciclina D2/genética , Ciclina D2/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/genética , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Glucose/administração & dosagem , Ilhotas Pancreáticas/efeitos dos fármacos , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Prolactina/administração & dosagem , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Ratos , Ratos Wistar , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Endocrinology ; 151(7): 3074-83, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20484462

RESUMO

Prolactin (PRL) induces beta-cell proliferation and glucose-stimulated insulin secretion (GSIS) and counteracts the effects of glucocorticoids on insulin production. The mechanisms by which PRL up-regulates GSIS are unknown. We used rat islets and insulinoma (INS-1) cells to explore the interactions of PRL, glucose, and dexamethasone (DEX) in the regulation of beta-cell pyruvate carboxylase (PC), pyruvate dehydrogenase (PDH), and the pyruvate dehydrogenase kinases (PDKs), which catalyze the phosphorylation and inactivation of PDH. PRL increased GSIS by 37% (P < 0.001) in rat islets. Glucose at supraphysiological concentrations (11 mm) increased PC mRNA in islets; in contrast, PRL suppressed PC mRNA levels in islets and INS-1 cells, whereas DEX was without effect. Neither PRL nor DEX altered PC protein or activity levels. In INS-1 cells, PRL increased PDH activity 1.4- to 2-fold (P < 0.05-0.001) at glucose concentrations ranging from 2.5-11 mm. DEX reduced PDH activity; this effect was reversed by PRL. PDK1, -2, -3, and -4 mRNAs were detected in both islets and insulinoma cells, but the latter expressed trivial amounts of PDK4. PRL reduced PDK2 mRNA and protein levels in rat islets and INS-1 cells and PDK4 mRNA in islets; DEX increased PDK2 mRNA in islets and INS-1 cells; this effect was reversed by PRL. Our findings suggest that PRL induction of GSIS is mediated by increases in beta-cell PDH activity; this is facilitated by suppression of PDKs. PRL counteracts the effects of DEX on PDH and PDK expression, suggesting novel roles for the lactogens in the defense against diabetes.


Assuntos
Dexametasona/farmacologia , Glucose/farmacologia , Células Secretoras de Insulina/metabolismo , Prolactina/farmacologia , Animais , Western Blotting , Linhagem Celular Tumoral , Técnicas In Vitro , Células Secretoras de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Proteínas Serina-Treonina Quinases/genética , Piruvato Carboxilase/genética , Piruvato Descarboxilase/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
Endocrine ; 32(2): 182-91, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17975745

RESUMO

We recently described a novel mouse model that combines resistance to lactogenic hormones with GH deficiency (GHD). The GHD/lactogen-resistant males develop obesity and insulin resistance with age. We hypothesized that altered production of pancreatic hormones and dysregulation of adipocytokine secretion and action contribute to the pathogenesis of their insulin resistance. Double-mutant males (age 12-16 months) had fasting hyperinsulinemia, hyperamylinemia, hyperleptinemia, and a decreased ratio of adiponectin to leptin. Adiponectin receptor 1 and 2 (AdipoR1 and R2) mRNA levels in liver and skeletal muscle were normal but hepatic insulin receptor mRNA was increased. Relative to double-mutant males, GHD males had lower levels of insulin, amylin, and leptin, higher levels of adiponectin, and higher expression of hepatic AdipoR1 and insulin receptor mRNAs. Lactogen-resistant mice had reduced hepatic adipoR2 mRNA. In response to stress the plasma concentrations of MCP-1 and IL-6 increased in double-mutant males but not GHD or lactogen-resistant males. Our findings suggest that the insulin resistance of GHD/lactogen-resistant males is accompanied by dysregulation of pancreatic hormone and adipocytokine secretion and receptor expression. Phenotypic differences between double-mutant and GHD males suggest that lactogens and GH exert differential but overlapping effects on fat deposition and adipocytokine secretion and action.


Assuntos
Adipocinas/metabolismo , Hormônio do Crescimento/deficiência , Hormônios Pancreáticos/metabolismo , Prolactina/metabolismo , Receptor de Insulina/metabolismo , Receptores de Adiponectina/metabolismo , Adiponectina/sangue , Envelhecimento/fisiologia , Amiloide/sangue , Animais , Quimiocina CCL2/sangue , Modelos Animais de Doenças , Feminino , Insulina/sangue , Resistência à Insulina/fisiologia , Interleucina-6/sangue , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Leptina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/fisiopatologia
14.
Mol Reprod Dev ; 74(8): 997-1007, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17342741

RESUMO

The loss of the cyclin-dependent kinase inhibitors (CKIs) p18(Ink4c) and p19(Ink4d) leads to male reproductive defects (Franklin et al., 1998. Genes Dev 12: 2899-2911; Zindy et al., 2000. Mol Cell Biol 20: 372-378; Zindy et al., 2001. Mol Cell Biol 21: 3244-3255). In order to assess whether these inhibitors directly or indirectly affect male germ cell differentiation, we examined the expression of p18(Ink4c) and p19(Ink4d) in spermatogenic and supporting cells in the testis and in pituitary gonadotropes. Both p18(Ink4c) and p19(Ink4d) are most abundant in the testis after 18 days of age and are expressed in purified populations of spermatogenic and testicular somatic cells. Different p18(Ink4c) mRNAs are expressed in isolated spermatogenic and Leydig cells. Spermatogenic cells also express a novel p19(Ink4d) transcript that is distinct from the smaller transcript expressed in Sertoli cells, Leydig cells and in other tissues. Immunohistochemistry detected significant levels of p19(Ink4d) in preleptotene spermatocytes, pachytene spermatocytes, condensing spermatids, and Sertoli cells. Immunoprecipitation-Western analysis detected both CKI proteins in isolated pachytene spermatocytes and round spermatids. CDK4/6-CKI complexes were detected in germ cells by co-immunoprecipitation, although the composition differed by cell type. p19(Ink4d) was also identified in FSH+ gonadotrophs, suggesting that this CKI may be independently required in the pituitary. Possible cell autonomous and paracrine mechanisms for the spermatogenic defects in mice lacking p18(Ink4c) or p19(Ink4d) are supported by expression of these CKIs in spermatogenic cells and in somatic cells of the testis and pituitary.


Assuntos
Inibidor de Quinase Dependente de Ciclina p18/metabolismo , Inibidor de Quinase Dependente de Ciclina p19/metabolismo , Gonadotrofos/metabolismo , Reprodução/fisiologia , Testículo/metabolismo , Animais , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p18/genética , Inibidor de Quinase Dependente de Ciclina p19/genética , Gonadotrofos/citologia , Masculino , Camundongos , Camundongos Knockout , Adeno-Hipófise/citologia , Adeno-Hipófise/metabolismo , Ribonucleoproteínas , Testículo/citologia
15.
Horm Res ; 66(3): 101-10, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16735796

RESUMO

Growth hormone GH stimulates lipolysis in mature adipocytes and primary preadipocytes but promotes adipogenesis in preadipocyte cell lines. The lactogenic hormones (prolactin PRL and placental lactogen) also stimulate adipogenesis in preadipocyte cell lines but have variable lipolytic and lipogenic effects in mature adipose tissue. We hypothesized that differences in expression of GH receptors GHR and PRL receptors PRLR during adipocyte development might explain some of the differential effects of the somatogens and lactogens on fat metabolism. To that end, we compared: (a) the expression of GHR and PRLR mRNAs in 3T3-L1 preadipocytes during the course of adipocyte differentiation; (b) the induction of STAT-5 activity by GH and PRL during adipogenesis; and (c) the acute effects of GH and PRL on the suppressors of cytokine signaling (SOCS-1-3 and cytokine-inducible SH2-domain-containing protein CIS) and IGF-I. In confluent, undifferentiated 3T3-L1 cells, the levels of GHR mRNA were approximately 250-fold higher than the levels of PRLR mRNA. Following induction of adipocyte differentiation the levels of PRLR mRNA rose 90-fold but GHR mRNA increased only 0.8-fold. Expression of both full-length (long) and truncated (short) isoforms of the PRLR increased during differentiation but the long isoform predominated at all time points. Mouse GH mGH stimulated increases in STAT-5a and 5b activity in undifferentiated as well as differentiating 3T3-L1 cells; mouse PRL mPRL had little or no effect on STAT-5 activity in undifferentiated cells but stimulated increases in STAT-5a and 5b activity in differentiating cells. mGH stimulated increases in SOCS-2 and SOCS-3 mRNAs in undifferentiated cells and SOCS-1-3 and CIS mRNAs in differentiating cells; mPRL induced CIS in differentiating cells but had no effect on SOCS-1-3. mPRL and mGH stimulated increases in IGF-I mRNA in differentiating cells but not in undifferentiated cells; the potency of mGH (3-6-fold increase, p < 0.01) exceeded that of mPRL (40-90% increase, p < 0.05). Our findings reveal disparities in the expression of PRLR and GHR during adipocyte development and differential effects of the hormones on STAT-5, the SOCS proteins, CIS, and IGF-I. These observations suggest that somatogens and lactogens regulate adipocyte development and fat metabolism through distinct but overlapping cellular mechanisms.


Assuntos
Adipogenia/fisiologia , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos/fisiologia , Adipogenia/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Hormônio do Crescimento/metabolismo , Hormônio do Crescimento/farmacologia , Fator de Crescimento Insulin-Like I/biossíntese , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Prolactina/metabolismo , Prolactina/farmacologia , Receptores da Prolactina/biossíntese , Receptores da Somatotropina/biossíntese , Fator de Transcrição STAT5/biossíntese , Proteínas Supressoras da Sinalização de Citocina/biossíntese
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa