Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1207792, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37502403

RESUMO

The ability of fungal species to produce a wide range of enzymes and metabolites, which act synergistically, makes them valuable tools in bioremediation, especially in the removal of pharmaceutically active compounds (PhACs) from contaminated environments. PhACs are compounds that have been specifically designed to treat or alter animal physiological conditions and they include antibiotics, analgesics, hormones, and steroids. Their detrimental effects on all life forms have become a source of public outcry due their persistent nature and their uncontrolled discharge into various wastewater effluents, hospital effluents, and surface waters. Studies have however shown that fungi have the necessary metabolic machinery to degrade PhACs in complex environments, such as soil and water, in addition they can be utilized in bioreactor systems to remove PhACs. In this regard, this review highlights fungal species with immense potential in the biodegradation of PhACs, their enzymatic arsenal as well as the probable mechanism of biodegradation. The challenges encumbering the real-time application of this promising bioremediative approach are also highlighted, as well as the areas of improvement and future perspective. In all, this paper points researchers to the fact that fungal bioremediation is a promising strategy for addressing the growing issue of pharmaceutical contamination in the environment and can help to mitigate the negative impacts on ecosystems and human health.

2.
Heliyon ; 6(9): e04890, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32984600

RESUMO

Despite the commendable milestones achieved in molecular maxillofacial pathology in the last decade, there remains a paucity of utilization of ancillary nanomolecular tools that complement the omics-based approaches. As the advent of omics science transforms our understanding of tumour biology from a phenomenological to a complex network (systems-oriented) paradigm, several ancillary tools have emerged to improve the scope of individualized medicine. Targeted nano drug delivery systems have significantly reduced toxicity of chemotherapeutic agents in a precise manner. Many conventional cancer therapies are limited in efficacy and this has led to the emergence of nanomedical innovations. Despite the success of nanomedicine, a major challenge that persists is tumour heterogeneity and biological complexity. A good understanding of the interaction between inorganic nanoparticles and the biological systems has led to the development of better tools for individualized medicine. Tools such as the composite organic-inorganic nanoparticles (COINs) and the quantum dots (QD) have significantly improved the identification and quantification of disease biomarkers, histopathological detection methods, as well as improving the clinical translation and utility of these nanomaterials. Nanomedicine has lent credence to several multipronged theranostic applications in medicine, and this has improved the medical practice tremendously. Despite the palpable influence of nanomedicine on the delivery of individualized medical therapies, the term "nanodentistry" remains in the background without much hype, albeit some progress has been made in this area. Hence, this review discusses the potential and challenges of nanodentistry in the diagnosis and treatment of maxillofacial pathologies, particularly cancer in resource-limited settings.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa