Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 513(4): 1100-1105, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31010674

RESUMO

Aging presents profound structural and physiological changes in the cardiovascular system. Oxidative stress, a major contributing factor during the aging process, has been involved in various age-related cardiovascular pathologies. Nevertheless, the underlying mechanism of oxidative stress in the aging heart is still unclear. This study was designed to determine whether changes in cardiac structure and function in aged rats were associated with decreases in the antioxidative defense mechanism. Young (3-month-old) and aged (24-month-old) rats were used in this study, and the differences in function, structure, antioxidative capacity and the expression of antioxidative-related proteins between the two groups were compared. By using echocardiography, we observed that compared to young rats, the left ventricular internal end-diastolic diameter (LVID; d) and left ventricular volume at diastole (LV Vol; d) were significantly increased in aged rats, while the MV E/A (E wave and A wave ratio, the ratio of peak velocity of early to late filling of mitral inflow), which represents heart diastolic function, was significantly decreased in aged rats. In addition, we observed degenerative histological modifications and an increased number of apoptotic cells in aged rats. We further detected the protein expression of catalase (CAT), glutathione synthetase (GSS), superoxide dismutase-1 (SOD-1), heme oxygenase-1 (HO-1) and NADPH: quinone oxidoreductase 1 (NQO1) in cardiac tissue. Western blot results showed that the expression of GSS was significantly decreased and that the expressions of CAT, SOD-1, and HO-1 were slightly decreased in aged rats. Immunohistochemistry results further confirmed the decreased expression of GSS, SOD-1 and NQO1 in cardiomyocytes in aged rats. Taken together, our data suggest that aging may affect the morphology and function of the heart by oxidative stress and the antioxidative defense mechanism.


Assuntos
Envelhecimento/metabolismo , Antioxidantes/fisiologia , Testes de Função Cardíaca , Animais , Apoptose , Ecocardiografia/métodos , Estresse Oxidativo/fisiologia , Oxirredutases/metabolismo , Ratos
2.
Front Med (Lausanne) ; 10: 1283302, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38076266

RESUMO

Introduction: Aging leads to significant structural and functional changes in blood vessels, which disrupt their normal function and impact cardiovascular health. Current research is actively exploring the NRF2 antioxidative pathway, recognizing its role in protecting cells by preserving their antioxidant defenses against damage. However, there has been limited exploration into the role of the NRF2 pathway in vascular aging. The primary objective of this study was to determine whether age-related changes in the aorta are associated with variations in the baseline levels of antioxidant enzymes, with a particular emphasis on how the NRF2 pathway operates in the aortic wall. Methods: A group of healthy aging female SD rats was compared with their younger counterparts. Various assessments were conducted, including measuring blood pressure, analyzing serum lipid profiles, examining aortic tissue, and assessing the expression of antioxidant enzymes. Results: The results revealed significant differences in both blood pressure and serum lipid levels between the aged and younger rats. The examination of the aorta in older rats showed structural alterations, increased apoptosis, and the accumulation of fatty deposits. In the older rats, levels of SOD-1 (superoxide dismutase) and GSS (glutathione synthetase) were lower, whereas NRF2, KEAP-1 (Kelch-like ECH-associated protein 1), and HO-1 (Heme oxygenase 1) were higher. Discussion: This study advances our understanding of how aging affects the antioxidant system in blood vessels, particularly in relation to the regulation of the NRF2/HO-1 pathway in the aorta. These findings suggest that targeting the NRF2/HO-1 pathway could present anovel therapeutic approach for addressing age-related vascular issues.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa