Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(15): e2318072121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38573966

RESUMO

As one of the most stunning biological nanostructures, the single-diamond (SD) surface discovered in beetles and weevils exoskeletons possesses the widest complete photonic bandgap known to date and is renowned as the "holy grail" of photonic materials. However, the synthesis of SD is difficult due to its thermodynamical instability compared to the energetically favoured bicontinuous double diamond and other easily formed lattices; thus, the artificial fabrication of SD has long been a formidable challenge. Herein, we report a bottom-up approach to fabricate SD titania networks via a one-pot cooperative assembly scenario employing the diblock copolymer poly(ethylene oxide)-block-polystyrene as a soft template and titanium diisopropoxide bis(acetylacetonate) as an inorganic precursor in a mixed solvent, in which the SD scaffold was obtained by kinetically controlled nucleation and growth in the skeletal channels of the diamond minimal surface formed by the polymer matrix. Electron crystallography investigations revealed the formation of tetrahedrally connected SD frameworks with the space group Fd [Formula: see text] m in a polycrystalline anatase form. A photonic bandgap calculation showed that the resulting SD structure has a wide and complete bandgap. This work solves the complex synthetic enigmas and offers a frontier in hyperbolic surfaces, biorelevant materials, next-generation optical devices, etc.

2.
Nano Lett ; 21(1): 747-755, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33356330

RESUMO

The Yes-associated protein (YAP) is a major oncoprotein responsible for cell proliferation control. YAP's oncogenic activity is regulated by both the Hippo kinase cascade and uniquely by a mechanical-force-induced actin remodeling process. Inspired by reports that ovarian cancer cells specifically accumulate the phosphatase protein ALPP on lipid rafts that physically link to actin cytoskeleton, we developed a molecular self-assembly (MSA) technology that selectively halts cancer cell proliferation by inactivating YAP. We designed a ruthenium-complex-peptide precursor molecule that, upon cleavage of phosphate groups, undergoes self-assembly to form nanostructures specifically on lipid rafts of ovarian cancer cells. The MSAs exert potent, cancer-cell-specific antiproliferative effects in multiple cancer cell lines and in mouse xenograft tumor models. Our work illustrates how basic biochemical insights can be exploited as the basis for a nanobiointerface fabrication technology which links nanoscale protein activities at specific subcellular locations to molecular biological activities to suppress cancer cell proliferation.


Assuntos
Neoplasias Ovarianas , Proteínas Serina-Treonina Quinases , Actinas , Animais , Feminino , Humanos , Microdomínios da Membrana , Camundongos , Neoplasias Ovarianas/tratamento farmacológico , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
3.
Microsc Microanal ; 26(4): 758-767, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31753049

RESUMO

Surface-sensitive information on a bulk sample can be obtained by using a low incident electron energy (low accelerating voltage/landing voltage) in a scanning electron microscope (SEM). However, topography and composition contrast obtained at low incident electron energies may not be intuitive and should be analyzed carefully. By combining an Auger electron spectrometer (AES) with a low incident electron energy SEM (LE-SEM), we investigated the SEM contrast carefully by separating the secondary electron (SE) and back-scattered electron (BSE) components with high accuracy. For this, we modified an AES to measure the electron energy in the range of 0­0.6 keV with a sample bias voltage of 0 to −0.3 keV. We could clearly observe reversed brightness of gold and carbon (graphite) in BSE images when the energy of the incident electrons was reduced to 0.2­0.3 keV. In addition, reflected electron energy spectroscopy (REELS) is known to be a tool for chemical state analysis of the sample. We demonstrated that it is possible to study the electron states of graphite, diamond, and graphene by acquiring low incident energy REELS spectra from their surfaces with the newly modified AES. This will be a new method for analyzing the electron states of local areas of a surface.

4.
Microsc Microanal ; 24(2): 156-162, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29699597

RESUMO

Green culms of bamboo and charcoal of Bambusa multiplex were investigated by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) mapping. A dynamic observation of the initial stage of carbonization was also performed in-situ by heating a radial longitudinal section of the bamboo culm at a rate of 20°C/min up to 500°C. EDS mapping of the green bamboo culms detected Si signals in the harder cells such as the epidermis (Ep), cortex (Cor) and vascular bundle sheath (Bs) and between these cells as silicon oxide particles. Appreciable morphological change of the cells occurred in a temperature range of about 300-400°C due to the decomposition of cellulose that is the main component of the bamboo cells. The charcoal of the bamboo culm has a skin layer which originates from the Ep and Cor and the main central cylinder with many openings that originate from the expanded xylem and phloem holes. During carbonization, the Si atoms in the Ep and Cor were segregated as thin silicon oxide layers onto both the sides of the skin layer and the Si included in the Bs fibers and parenchyma cells accumulated near the walls of the openings.

5.
Langmuir ; 33(9): 2148-2156, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28182428

RESUMO

The properties of the outermost surfaces of mesoporous silica thin films are critical in determining their functions. Obtaining information on the presence or absence of silica layers on the film surfaces and on the degree of mesopore opening is essential for applications of surface mesopores. In this study, the outermost surfaces of mesoporous silica thin films with 3-dimensional orthorhombic and 2-dimensional hexagonal structures were observed using ultralow voltage high resolution scanning electron microscopy (HR-SEM) with decelerating optics. SEM images of the surfaces before and after etching with NH4F were taken at various landing voltages. Comparing the images taken under different conditions indicated that the outermost surfaces of the nonetched mesoporous silica thin films are coated with a thin layer of silica. The images taken at an ultralow landing voltage (i.e., 80 V) showed that the presence or absence of surface silica layers depends on whether the film was etched with an aqueous solution of NH4F. The mesostructures of both the etched and nonetched films were visible in images taken at a conventional landing voltage (2 kV); hence, the ultralow landing voltage was more suitable for analyzing the outermost surfaces. The SEM observations provided detailed information about the surfaces of mesoporous silica thin films, such as the degree of pore opening and their homogeneities. AFM images of nonetched 2-dimensional hexagonal mesoporous silica thin films show that the shape of the silica layer on the surface of the films reflects the curvature of the top surface of the cylindrical mesochannels. SEM images taken at various landing voltages are discussed, with respect to the electron penetration range at each voltage. This study increases our understanding of the surfaces of mesoporous silica thin films, which may lead to potential applications utilizing the periodically arranged mesopores on these surfaces.

6.
Angew Chem Int Ed Engl ; 56(37): 11222-11225, 2017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28657163

RESUMO

About 15 years ago, the Ryoo group described the synthesis of CMK-5, a material consisting of a hexagonal arrangement of carbon nanotubes. Extension of the surface casting synthesis to oxide compositions, however, was not possible so far, in spite of many attempts. Here it is demonstrated, that crystalline mesoporous hollow zirconia materials with very high surface areas up to 400 m2 g-1 , and in selected cases in the form of CMK-5-like, are indeed accessible via such a surface casting process. The key for the successful synthesis is an increased interaction between the silica hard template surface and the zirconia precursor species by using silanol group-rich mesoporous silica as a hard template. The surface areas of the obtained zirconias exceed those of conventionally hard-templated ones by a factor of two to three. The surface casting process seems to be applicable also to other oxide materials.

7.
Nano Lett ; 15(11): 7265-72, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26501188

RESUMO

GaAs/GaAsBi coaxial multishell nanowires were grown by molecular beam epitaxy. Introducing Bi results in a characteristic nanowire surface morphology with strong roughening. Elemental mappings clearly show the formation of the GaAsBi shell with inhomogeneous Bi distributions within the layer surrounded by the outermost GaAs, having a strong structural disorder at the wire surface. The nanowire exhibits a predominantly ZB structure from the bottom to the middle part. The polytipic WZ structure creates denser twin defects in the upper part than in the bottom and middle parts of the nanowire. We observe room temperature cathodoluminescence from the GaAsBi nanowires with a broad spectral line shape between 1.1 and 1.5 eV, accompanied by multiple peaks. A distinct energy peak at 1.24 eV agrees well with the energy of the reduced GaAsBi alloy band gap by the introduction of 2% Bi. The existence of localized states energetically and spatially dispersed throughout the NW are indicated from the low temperature cathodoluminescence spectra and images, resulting in the observed luminescence spectra characterized by large line widths at low temperatures as well as by the appearance of multiple peaks at high temperatures and for high excitation powers.

8.
J Am Chem Soc ; 137(6): 2199-202, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25622094

RESUMO

We enclose octahedral silver nanocrystals (Ag NCs) in metal-organic frameworks (MOFs) to make mesoscopic constructs O(h)-nano-Ag⊂MOF in which the interface between the Ag and the MOF is pristine and the MOF is ordered (crystalline) and oriented on the Ag NCs. This is achieved by atomic layer deposition of aluminum oxide on Ag NCs and addition of a tetra-topic porphyrin-based linker, 4,4',4″,4‴-(porphyrin-5,10,15,20-tetrayl)tetrabenzoic acid (H4TCPP), to react with alumina and make MOF [Al2(OH)2TCPP] enclosures around Ag NCs. Alumina thickness is precisely controlled from 0.1 to 3 nm, thus allowing control of the MOF thickness from 10 to 50 nm. Electron microscopy and grazing angle X-ray diffraction confirm the order and orientation of the MOF by virtue of the porphyrin units being perpendicular to the planes of the Ag. We use surface-enhanced Raman spectroscopy to directly track the metalation process on the porphyrin and map the distribution of the metalated and unmetalated linkers on a single-nanoparticle level.

9.
Angew Chem Int Ed Engl ; 54(50): 15170-5, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26489386

RESUMO

Inorganic nanomaterials endowed with hierarchical chirality could open new horizons in physical theory and applications because of their fascinating properties. Here, we report chiral ZnO films coated on quartz substrates with a hierarchical nanostructure ranging from atomic to micrometer scale. Three levels of hierarchical chirality exist in the ZnO films: helical ZnO crystalline structures that form primary helically coiled nanoplates, secondary helical stacking of these nanoplates, and tertiary nanoscale circinate aggregates formed by several stacked nanoplates. These films exhibited optical activity (OA) at 380 nm and in the range of 200-800 nm and created circularly polarized luminescence centered at 510 nm and Raman OA at 50-1400 cm(-1) , which was attributed to electronic transitions, scattering, photoluminescent emission, and Raman scattering in a dissymmetric electric field. The unprecedented strong OA could be attributed to multiple light scattering and absorption-enhanced light harvesting in the hierarchical structures.

10.
J Am Chem Soc ; 136(20): 7193-6, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24802633

RESUMO

Helical symmetry can be found in most flowers with a rotation of contort petal aestivation. For micro- and nanoscale analogies, flower mimicking structures have been reproduced; however, the conceptual chirality of "nanoflowers" has not yet been defined. Here, the chirality of the "flower" was defined by its nanosized chiral structure and consequent optical activity (OA), opening new horizons for the physical theory and chiral materials. We report the surfactant-mediated hydrothermal synthesis of chiral CuO nanoflowers using sodium dodecyl sulfate (SDS) as a structure-directing agent, an amino alcohol as a symmetry-breaking agent, and cupric salt as the inorganic source. Two levels of hierarchical chirality exist for a CuO nanoflower including primary helically arranged "nanoflakes" and secondary helical "subnanopetals" that form "nanopetals". The nanoflowers exhibited a prominent optical response to circularly polarized light (CPL) at the absorption bands characteristic of CuO.

11.
Adv Sci (Weinh) ; : e2401478, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38785178

RESUMO

To ensure compositional consistency while mitigating potential immunogenicity for stem cell therapy, synthetic scaffolds have emerged as compelling alternatives to native extracellular matrix (ECM). Substantial progress has been made in emulating specific natural traits featuring consistent chemical compositions and physical structures. However, recapitulating the dynamic responsiveness of the native ECM involving chemical transitions and physical remodeling during differentiation, remains a challenging endeavor. Here, the creation of adaptive scaffolds is demonstrated through sequential protein-instructed molecular assembly, utilizing stage-specific proteins, and incorporating in situ assembly technique. The procedure is commenced by introducing a dual-targeting peptide at the onset of stem cell differentiation. In response to highly expressed integrins and heparan sulfate proteoglycans (HSPGs) on human mesenchymal stem cell (hMSC), the peptides assembled in situ, creating customized extracellular scaffolds that adhered to hMSCs promoting osteoblast differentiation. As the expression of alkaline phosphatase (ALP) and collagen (COL-1) increased in osteoblasts, an additional peptide is introduced that interacts with ALP, initiating peptide assembly and facilitating calcium phosphate (CaP) deposition. The growth and entanglement of peptide assemblies with collagen fibers efficiently incorporated CaP into the network resulting in an adaptive biphasic scaffold that enhanced healing of bone injuries.

12.
J Mater Chem B ; 11(3): 565-575, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36354057

RESUMO

To date, cancer therapies largely consist of five pillars: surgery, radiation, chemotherapy, targeted therapy, and immunotherapy. Still, researchers are trying to innovate the current cancer therapies to pursue an ideal one without side effects. For developing such a therapy, we designed a chemically well-defined route to a PEG- and docetaxel (DTX)-conjugated inorganic polymer, polyphosphazene, named "polytaxel (PTX)" with a prolonged blood circulation time and tumor localization. Here, we conducted the proof-of-concept study of the ideal therapy in orthotopic and xenograft pancreatic cancer models. We found that the average tumor inhibition rates of PTX were similar to those of DTX without any DTX toxicity-related side effects, such as neutropenia and weight loss. In conclusion, PTX met the requirements of an ideal anticancer drug with high anticancer efficacy and 100% survival rate. PTX is expected to replace any existing anticancer therapies in clinical practice.


Assuntos
Neutropenia , Neoplasias Pancreáticas , Humanos , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Nível de Efeito Adverso não Observado , Taxoides/efeitos adversos , Polímeros/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Neutropenia/induzido quimicamente , Neutropenia/tratamento farmacológico
13.
Nat Commun ; 13(1): 5002, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008449

RESUMO

Advances in mechanistic understanding of integrin-mediated adhesion highlight the importance of precise control of ligand presentation in directing cell migration. Top-down nanopatterning limited the spatial presentation to sub-micron placing restrictions on both fundamental study and biomedical applications. To break the constraint, here we propose a bottom-up nanofabrication strategy to enhance the spatial resolution to the molecular level using simple formulation that is applicable as treatment agent. Via self-assembly and co-assembly, precise control of ligand presentation is succeeded by varying the proportions of assembling ligand and nonfunctional peptide. Assembled nanofilaments fulfill multi-functions exerting enhancement to suppression effect on cell migration with tunable amplitudes. Self-assembled nanofilaments possessing by far the highest ligand density prevent integrin/actin disassembly at cell rear, which expands the perspective of ligand-density-dependent-modulation, revealing valuable inputs to therapeutic innovations in tumor metastasis.


Assuntos
Integrinas , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Integrinas/metabolismo , Ligantes , Ligação Proteica
14.
Chemistry ; 17(49): 13773-81, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-22052456

RESUMO

A combination of atomic force microscopy (AFM), high-resolution scanning electron microscopy (HR-SEM), focused-ion-beam scanning electron microscopy (FIB-SEM), X-ray photoelectron spectroscopy (XPS), confocal fluorescence microscopy (CFM), and UV/Vis and synchrotron-based IR microspectroscopy was used to investigate the dealumination processes of zeolite ZSM-5 at the individual crystal level. It was shown that steaming has a significant impact on the porosity, acidity, and reactivity of the zeolite materials. The catalytic performance, tested by the styrene oligomerization and methanol-to-olefin reactions, led to the conclusion that mild steaming conditions resulted in greatly enhanced acidity and reactivity of dealuminated zeolite ZSM-5. Interestingly, only residual surface mesoporosity was generated in the mildly steamed ZSM-5 zeolite, leading to rapid crystal coloration and coking upon catalytic testing and indicating an enhanced deactivation of the zeolites. In contrast, harsh steaming conditions generated 5-50 nm mesopores, extensively improving the accessibility of the zeolites. However, severe dealumination decreased the strength of the Brønsted acid sites, causing a depletion of the overall acidity, which resulted in a major drop in catalytic activity.


Assuntos
Zeolitas/química , Concentração de Íons de Hidrogênio , Microscopia Confocal , Microscopia Eletrônica de Varredura , Espectroscopia Fotoeletrônica , Porosidade , Espectrofotometria Infravermelho
15.
Nanomaterials (Basel) ; 11(4)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918306

RESUMO

Metal oxide nanocrystals have garnered significant attention owing to their unique properties, including luminescence, ferroelectricity, and catalytic activity. Among the various synthetic methods, hydrothermal synthesis is a promising method for synthesizing metal oxide nanocrystals and nanoclusters. Because the shape and surface structure of the nanocrystals largely affect their properties, their analytical methods should be developed. Further, the arrangement of nanocrystals should be studied because the properties of nanoclusters largely depend on the arrangement of the primary nanocrystals. However, the analysis of nanocrystals and nanoclusters remains difficult because of their sizes. Conventionally, transmission electron microscopy (TEM) is widely used to study materials in nanoscale. However, TEM images are obtained as the projection of three-dimensional structures, and it is difficult to observe the surface structures and the arrangement of nanocrystals using TEM. On the other hand, scanning electron microscopy (SEM) relies on the signals from the surface of the samples. Therefore, SEM can visualize the surface structures of samples. Previously, the spatial resolution of SEM was not enough to observe nanoparticles and nanomaterials with sizes of between 10 and 50 nm. However, recent developments, including the low-landing electron-energy method, improved the spatial resolution of SEM, which allows us to observe fine details of the nanocluster surface directory. Additionally, improved detectors allow us to visualize the elemental mapping of materials even at low voltage with high solid angle. Further, the use of a liquid sample holder even enabled the observation of nanocrystals in water. In this paper, we discuss the development of SEM and related observation technologies through the observation of hydrothermally prepared nanocrystals and nanoclusters.

16.
ACS Appl Bio Mater ; 3(3): 1698-1704, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35021658

RESUMO

Inspired by the mechanoresponsive orientation of actin filaments in cell, we introduce a design paradigm of synthetic molecular self-assembling fibrils that respond to external mechanical force by transforming from a macroscopically disorder state to a highly ordered uniaxial aligned state. The incorporation of aromatic-containing amino acids and negatively charged amino acids lead to self-assembly motifs that transform into uniform nanofibrils in acidic solution. Adjusting the pH level of aqueous solution introduces optimal negative charge to the surface of self-assembling nanofibrils inducing long-range electrostatic repulsion forming a nematic phase. Upon external mechanical force, nanofibrils align in the force direction. Via evaporation casting in capillary confinement, the solvated synthetic self-assembling nanofibrils transform into scalable lamellar domains. Adjusting capillary geometry and drying procedure offers further parameters for tuning the mesoscale alignment of nanofibrils generating a variety of interference colors. The design paradigm of mechanoresponsive alignment of self-assembled nanofibrils as an addition of nanofabrication techniques is potentially employable for realizing biomimetic optical structures.

17.
Physiol Behav ; 96(2): 262-9, 2009 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-18976677

RESUMO

To investigate the effect of a high-fat diet on brain and pancreas functions, we used SAMP10 mice that have characteristics of brain atrophy and cognitive dysfunction with aging. Simultaneously, we investigated the effect of green tea catechin consumption on high-fat diet feeding, because green tea catechin has been reported to improve brain atrophy, brain dysfunction and obesity. The body weight of mice fed a high-fat diet from 2 to 12 months was higher than that of the control, although the calorie intake was not. The high-fat diet also increased insulin secretion; however, the hypersecretion of insulin and obesity were suppressed when mice were fed a high-fat diet with green tea catechin and caffeine. Furthermore, brain atrophy was suppressed and the working memory, tested using Y-maze, improved in mice fed a high-fat diet containing green tea catechin and caffeine. The secretion of insulin might affect both obesity and brain function. A strong correlation was found between working memory and insulin release in mice fed a high-fat diet with green tea catechin and/or caffeine. The results indicate the protective effect of green tea catechin and caffeine on the functions of brain and pancreas in mice fed a high-fat diet.


Assuntos
Envelhecimento/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Cafeína/farmacologia , Catequina/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Gorduras na Dieta/efeitos adversos , Pâncreas/efeitos dos fármacos , 8-Hidroxi-2'-Desoxiguanosina , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Peso Corporal/efeitos dos fármacos , Catequina/análogos & derivados , Catequina/química , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Teste de Tolerância a Glucose , Metabolismo dos Lipídeos/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Mutantes , Sesquiterpenos/metabolismo , Sinaptofisina/metabolismo , Fatores de Tempo
18.
Chem Commun (Camb) ; 55(22): 3266-3269, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30810144

RESUMO

The nanostructure and morphology of mesoporous carbon obtained from a newly designed porous geopolymer template were characterized by low-voltage high-resolution scanning electron microscopy. The present porous carbon exhibited a large specific surface area and pore volume, resulting in a high CO2 uptake capacity.

19.
Microsc Res Tech ; 81(7): 761-769, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29675989

RESUMO

Green culms of Bambusa multiplex and the bamboo charcoal carbonized from the green culms at 700°C have been studied by means of X-ray diffraction, X-ray fluorescent element analysis, analytical scanning electron microscopy, and analytical scanning transmission electron microscopy (STEM), aiming at industrial applications as raw materials for functional devices and substances. It is revealed that the green culms and the charcoal contain a significant amount of Si, in particular, ∼18 wt % in the skin. The green culms comprise amorphous and crystalline celluloses. The charcoal has a so-called amorphous structure which is composed of randomly distributed carbon nanotubes and fibers. The growth of Ag-doped activated charcoal powders that were produced by two different methods using this charcoal powder has also been studied.


Assuntos
Bambusa/química , Carvão Vegetal/química , Caules de Planta/química , Bambusa/ultraestrutura , Celulose/química , Cor , Microscopia Eletrônica de Varredura , Nanotubos de Carbono , Caules de Planta/ultraestrutura , Difração de Raios X
20.
Nanoscale ; 8(12): 6712-20, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26950710

RESUMO

Metal-organic frameworks (MOFs) are attracting considerable attention for their use as both the precursor and the template to prepare metal oxides or carbon-based materials. For the first time in this paper, the core-shell ZIF-8@ZIF-67 crystals are thermally converted into porous ZnO@Co3O4 composites by combining a seed-mediated growth process with a two-step calcination. The designed porous ZnO@Co3O4 composites exhibited the highest photocatalytic activity with an excellent stability for the reduction of CO2 among the commonly reported composite photocatalysts. Their superior photocatalytic performance is demonstrated to be resulting from the unique porous structure of ZnO@Co3O4 and the co-catalytic function of Co3O4 which can effectively suppress the photocorrosion of ZnO.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa