Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(6): 4087-4097, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38295327

RESUMO

DNA-protein complexes are attractive components with broad applications in various research fields, such as DNA aptamer-enzyme complexes as biosensing elements. However, noncovalent DNA-protein complexes often decrease detection sensitivity because they are highly susceptible to environmental conditions. In this study, we developed a versatile DNA-protein covalent-linking patch (D-Pclip) for fabricating covalent and stoichiometric DNA-protein complexes. We comprehensively explored the database to determine the DNA-binding ability of the candidates and selected UdgX as the only uracil-DNA glycosylase known to form covalent bonds with DNA via uracil, with a binding efficiency >90%. We integrated a SpyTag/SpyCatcher protein-coupling system into UdgX to create a universal and convenient D-Pclip. The usability of D-Pclip was shown by preparing a stoichiometric model complex of a hemoglobin (Hb)-binding aptamer and glucose oxidase (GOx) by mixing at 4 °C. The prepared aptamer-GOx complexes detected Hb in a dose-dependent manner within the clinically required detection range in buffer and human serum without any washing procedures. D-Pclip covalently connects any uracil-inserted DNA sequence and any SpyCatcher-fused protein stoichiometrically; therefore, it has a high potential for various applications.


Assuntos
Proteínas de Ligação a DNA , DNA , Humanos , Proteínas de Ligação a DNA/química , DNA/química , Sequência de Bases , Uracila
2.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474105

RESUMO

Although IgG-free immunosensors are in high demand owing to ethical concerns, the development of convenient immunosensors that alternatively integrate recombinantly produced antibody fragments, such as single-chain variable fragments (scFvs), remains challenging. The low affinity of antibody fragments, unlike IgG, caused by monovalent binding to targets often leads to decreased sensitivity. We improved the affinity owing to the bivalent effect by fabricating a bivalent antibody-enzyme complex (AEC) composed of two scFvs and a single glucose dehydrogenase, and developed a rapid and convenient scFv-employed electrochemical detection system for the C-reactive protein (CRP), which is a homopentameric protein biomarker of systemic inflammation. The development of a point-of-care testing (POCT) system is highly desirable; however, no scFv-based CRP-POCT immunosensors have been developed. As expected, the bivalent AEC showed higher affinity than the single scFv and contributed to the high sensitivity of CRP detection. The electrochemical CRP detection using scFv-immobilized magnetic beads and the bivalent AEC as capture and detection antibodies, respectively, was achieved in 20 min without washing steps in human serum and the linear range was 1-10 nM with the limit of detection of 2.9 nM, which has potential to meet the criteria required for POCT application in rapidity, convenience, and hand-held detection devices without employing IgGs.


Assuntos
Técnicas Biossensoriais , Anticorpos de Cadeia Única , Humanos , Anticorpos de Cadeia Única/metabolismo , Proteína C-Reativa , Imunoensaio
3.
Biosens Bioelectron ; 255: 116219, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552525

RESUMO

We introduce a versatile method to convert NAD+ or NADP+ -dependent dehydrogenases into quasi-direct electron transfer (quasi-DET)-type dehydrogenases, by modifying with a mediator on the enzyme surface toward the development of 2.5th generation enzymatic sensors. In this study, we use ß-hydroxybutyrate (BHB) dehydrogenase (BHBDh) from Alcaligenes faecalis (AfBHBDh) as a representative NAD+ or NADP+ -dependent dehydrogenase. BHBDhs are important in ketone monitoring, especially for the diagnosis of diabetic ketoacidosis. We modified AfBHBDh with a thiol-reactive phenazine ethosulfate (trPES). We designed, constructed, and modified mutant BHBDhs harboring cysteine residues within 20 Å from the C4 nicotinamide in NAD+/NADH. Mutants Ser65Cys, Thr96Cys, and Lys106Cys showed indistinguishable catalytic activities from the wild-type enzyme, even after trPES modification. These trPES-modified mutants were immobilized on gold disk electrodes via amine coupling with succinimide-groups of dithiobis (succinimidyl hexanoate) self-assembled monolayers for electrochemical measurements. Considering there is a wide range of BHB concentrations, we exploited the linear regression in log scales. The linear range for the sensors with trPES-modified BHBDh mutants Ser65Cys, Thr96Cys, and Lys106Cys were 0.1-4.0 mM in both buffer solution and artificial interstitial fluid (ISF). They have limits of detection of 0.047 mM for Ser65Cys, 0.15 mM for Thr96Cys, and 0.060 mM for Lys106Cys in buffer solution, and 0.12 mM, 0.089 mM, and 0.044 mM in artificial ISF, respectively. These results indicate that redox mediator modification of NAD(P)-dependent dehydrogenases converts them into quasi-DET-type dehydrogenases, thereby enabling their utilization in 2.5th generation enzymatic sensors, which will facilitate the construction of enzymatic sensors suitable for continuous monitoring systems.


Assuntos
Técnicas Biossensoriais , Glucose , NAD , Elétrons , NADP , Técnicas Biossensoriais/métodos , Oxirredutases
4.
Biosens Bioelectron ; 261: 116511, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38917513

RESUMO

Single-chain fragment variables (scFvs), composed of variable heavy and light chains joined together by a peptide linker, can be produced using a cost-effective bacterial expression system, making them promising candidates for pharmaceutical applications. However, a versatile method for monitoring recombinant-protein production has not yet been developed. Herein, we report a novel anti-scFv aptamer-based biosensing system with high specificity and versatility. First, anti-scFv aptamers were screened using the competitive systematic evolution of ligands by exponential enrichment, focusing on a unique scFv-specific peptide linker. We selected two aptamers, P1-12 and P2-63, with KD = 2.1 µM or KD = 1.6 µM toward anti-human epidermal growth factor receptor (EGFR) scFv, respectively. These two aptamers can selectively bind to scFv but not to anti-EGFR Fv. Furthermore, the selected aptamers recognized various scFvs with different CDRs, such as anti-4-1BB and anti-hemoglobin scFv, indicating that they recognized a unique peptide linker region. An electrochemical sensor for anti-EGFR scFv was developed using anti-scFv aptamers based on square wave voltammetry. Thus, the constructed sensor could monitor anti-EGFR scFv concentrations in the range of 10-500 nM in a diluted medium for bacterial cultivation, which covered the expected concentration range for the recombinant production of scFvs. These achievements promise the realization of continuous monitoring sensors for pharmaceutical scFv, which will enable the real-time and versatile monitoring of large-scale scFv production.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Receptores ErbB , Anticorpos de Cadeia Única , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/imunologia , Humanos , Proteínas Recombinantes/genética , Técnica de Seleção de Aptâmeros/métodos , Técnicas Eletroquímicas/métodos
5.
Artigo em Chinês | WPRIM | ID: wpr-540159

RESUMO

Objective:Express a human anti-HBsAg single chain antibody fragment(scFv)-consensus interferon (cIFN) fusion protein by bacterial expression system and analyse the function of the fusion protein.Methods:Human anti-HBsAg single chain monoclonal antibody cDNA encoding the variable regions of immunoglobulin from PBMC of Hepatitis B patient. Consensus interferon gene was produced by overlap PCR.A plasmid for production of cIFN-scFV fusion protein was constructed, then the expression vector pRA cIFN-scFV transformed with the E.coli strain BL21(DE3). The gene product was analysed SDS-PAGE and Western blotting, then was solubilized by guanidine hydyochloride, refolded by conventional dilution method, and purified using metal-chelating chromatography. The immune and functional analysis of the resulting fusion protein have been studied by ELISA,FACS(Flow cytometry),MTS assay and hemaglutination inhibition test.Results:The authors isolated and characterized the human anti-HBsAg single chain antibody fragment(scFv)-consensus interferon (cIFN) fusion protein. The resulting human anti-HBsAg scFv-cIFN fusion protein was bound to react with HBsAg and cIFN, this react show that highly specific and bioactivity.Conclusion:A human anti-HBsAg single chain antibody fragment(scFv)-consensus interferon (cIFN) fusion protein was produced by bacterial expression system in this study. This genetically engineered human anti-HBsAg scFv-cIFN fusion protein promises to be an important reagent for hepatitis B immunotherapy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa