Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Circulation ; 147(25): 1902-1918, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37128901

RESUMO

BACKGROUND: Cardiac-specific myosin light chain kinase (cMLCK), encoded by MYLK3, regulates cardiac contractility through phosphorylation of ventricular myosin regulatory light chain. However, the pathophysiological and therapeutic implications of cMLCK in human heart failure remain unclear. We aimed to investigate whether cMLCK dysregulation causes cardiac dysfunction and whether the restoration of cMLCK could be a novel myotropic therapy for systolic heart failure. METHODS: We generated the knock-in mice (Mylk3+/fs and Mylk3fs/fs) with a familial dilated cardiomyopathy-associated MYLK3 frameshift mutation (MYLK3+/fs) that had been identified previously by us (c.1951-1G>T; p.P639Vfs*15) and the human induced pluripotent stem cell-derived cardiomyocytes from the carrier of the mutation. We also developed a new small-molecule activator of cMLCK (LEUO-1154). RESULTS: Both mice (Mylk3+/fs and Mylk3fs/fs) showed reduced cMLCK expression due to nonsense-mediated messenger RNA decay, reduced MLC2v (ventricular myosin regulatory light chain) phosphorylation in the myocardium, and systolic dysfunction in a cMLCK dose-dependent manner. Consistent with this result, myocardium from the mutant mice showed an increased ratio of cardiac superrelaxation/disordered relaxation states that may contribute to impaired cardiac contractility. The phenotypes observed in the knock-in mice were rescued by cMLCK replenishment through the AAV9_MYLK3 vector. Human induced pluripotent stem cell-derived cardiomyocytes with MYLK3+/fs mutation reduced cMLCK expression by 50% and contractile dysfunction, accompanied by an increased superrelaxation/disordered relaxation ratio. CRISPR-mediated gene correction, or cMLCK replenishment by AAV9_MYLK3 vector, successfully recovered cMLCK expression, the superrelaxation/disordered relaxation ratio, and contractile dysfunction. LEUO-1154 increased human cMLCK activity ≈2-fold in the Vmax for ventricular myosin regulatory light chain phosphorylation without affecting the Km. LEUO-1154 treatment of human induced pluripotent stem cell-derived cardiomyocytes with MYLK3+/fs mutation restored the ventricular myosin regulatory light chain phosphorylation level and superrelaxation/disordered relaxation ratio and improved cardiac contractility without affecting calcium transients, indicating that the cMLCK activator acts as a myotrope. Finally, human myocardium from advanced heart failure with a wide variety of causes had a significantly lower MYLK3/PPP1R12B messenger RNA expression ratio than control hearts, suggesting an altered balance between myosin regulatory light chain kinase and phosphatase in the failing myocardium, irrespective of the causes. CONCLUSIONS: cMLCK dysregulation contributes to the development of cardiac systolic dysfunction in humans. Our strategy to restore cMLCK activity could form the basis of a novel myotropic therapy for advanced systolic heart failure.


Assuntos
Insuficiência Cardíaca Sistólica , Células-Tronco Pluripotentes Induzidas , Humanos , Camundongos , Animais , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , Fosforilação , Cadeias Leves de Miosina/genética , Cadeias Leves de Miosina/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Contração Miocárdica/fisiologia , RNA Mensageiro/genética , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo
2.
Am J Med Genet A ; 191(7): 1984-1989, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37141439

RESUMO

Craniofacial defects are one of the most frequent phenotypes in syndromic diseases. More than 30% of syndromic diseases are associated with craniofacial defects, which are important for the precise diagnosis of systemic diseases. Special AT-rich sequence-binding protein 2 (SATB2)-associated syndrome (SAS) is a rare syndromic disease associated with a wide variety of phenotypes, including intellectual disability and craniofacial defects. Among them, dental anomalies are the most frequently observed phenotype and thus becomes an important diagnostic criterion for SAS. In this report, we demonstrate three Japanese cases of genetically diagnosed SAS with detailed craniofacial phenotypes. The cases showed multiple dental problems, which have been previously reported to be linked to SAS, including abnormal crown morphologies and pulp stones. One case showed a characteristic enamel pearl at the root furcation. These phenotypes add new insights for differentiating SAS from other disorders.


Assuntos
Deficiência Intelectual , Proteínas de Ligação à Região de Interação com a Matriz , Humanos , População do Leste Asiático , Síndrome , Fenótipo , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Proteínas de Ligação à Região de Interação com a Matriz/genética , Fatores de Transcrição/genética
3.
J Biol Chem ; 296: 100761, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33971198

RESUMO

Diabetes mellitus (DM) causes injury to tissues and organs, including to the heart and kidney, resulting in increased morbidity and mortality. Thus, novel potential therapeutics are continuously required to minimize DM-related organ damage. We have previously shown that dipeptidyl peptidase III (DPPIII) has beneficial roles in a hypertensive mouse model, but it is unknown whether DPPIII has any effects on DM. In this study, we found that intravenous administration of recombinant DPPIII in diabetic db/db mice for 8 weeks suppressed the DM-induced cardiac diastolic dysfunctions and renal injury without alteration of the blood glucose level. This treatment inhibited inflammatory cell infiltration and fibrosis in the heart and blocked the increase in albuminuria by attenuating the disruption of the glomerular microvasculature and inhibiting the effacement of podocyte foot processes in the kidney. The beneficial role of DPPIII was, at least in part, mediated by the cleavage of a cytotoxic peptide, named Peptide 2, which was increased in db/db mice compared with normal mice. This peptide consisted of nine amino acids, was a digested fragment of complement component 3 (C3), and had an anaphylatoxin-like effect determined by the Miles assay and chemoattractant analysis. The effect was dependent on its interaction with the C3a receptor and protein kinase C-mediated RhoA activation downstream of the receptor in endothelial cells. In conclusion, DPPIII plays a protective role in the heart and kidney in a DM animal model through cleavage of a peptide that is a part of C3.


Assuntos
Cardiomiopatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Dipeptidil Peptidases e Tripeptidil Peptidases/uso terapêutico , Coração/efeitos dos fármacos , Rim/efeitos dos fármacos , Substâncias Protetoras/uso terapêutico , Animais , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/fisiopatologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/fisiopatologia , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Terapia Enzimática , Coração/fisiopatologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Rim/metabolismo , Rim/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Substâncias Protetoras/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapêutico
4.
FASEB J ; 35(11): e21994, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34674311

RESUMO

Arrhythmogenic cardiomyopathy (ACM) caused by TMEM43 p.S358L is a fully penetrant heart disease that results in impaired cardiac function or fatal arrhythmia. However, the molecular mechanism of ACM caused by the TMEM43 variant has not yet been fully elucidated. In this study, we generated knock-in (KI) rats harboring a Tmem43 p.S358L mutation and established induced pluripotent stem cells (iPSCs) from patients based on the identification of TMEM43 p.S358L variant from a family with ACM. The Tmem43-S358L KI rats exhibited ventricular arrhythmia and fibrotic myocardial replacement in the subepicardium, which recapitulated the human ACM phenotype. The four-transmembrane protein TMEM43 with the p.S358L variant (TMEM43S358L ) was found to be modified by N-linked glycosylation in both KI rat cardiomyocytes and patient-specific iPSC-derived cardiomyocytes. TMEM43S358L glycosylation increased under the conditions of enhanced endoplasmic reticulum (ER) stress caused by pharmacological stimulation or age-dependent decline of the ER function. Intriguingly, the specific glycosylation of TMEM43S358L resulted from the altered membrane topology of TMEM43. Moreover, unlike TMEM43WT , which is mainly localized to the ER, TMEM43S358L accumulated at the nuclear envelope of cardiomyocytes with the increase in glycosylation. Finally, our comprehensive transcriptomic analysis demonstrated that the regional differences in gene expression patterns between the inner and outer layers observed in the wild type myocardium were partially diminished in the KI myocardium prior to exhibiting histological changes indicative of ACM. Altogether, these findings suggest that the aberrant accumulation of TMEM43S358L underlies the pathogenesis of ACM caused by TMEM43 p.S358L variant by affecting the transmural gene expression within the myocardium.


Assuntos
Cardiomiopatias , Proteínas de Membrana/fisiologia , Miocárdio/metabolismo , Adulto , Idoso , Animais , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Células Cultivadas , Feminino , Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Mutação , Miócitos Cardíacos , Ratos
5.
FASEB J ; 35(4): e21495, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33689182

RESUMO

Enhancers regulate gene expressions in a tissue- and pathology-specific manner by altering its activities. Plasma levels of atrial and brain natriuretic peptides, encoded by the Nppa and Nppb, respectively, and synthesized predominantly in cardiomyocytes, vary depending on the severity of heart failure. We previously identified the noncoding conserved region 9 (CR9) element as a putative Nppb enhancer at 22-kb upstream from the Nppb gene. However, its regulatory mechanism remains unknown. Here, we therefore investigated the mechanism of CR9 activation in cardiomyocytes using different kinds of drugs that induce either cardiac hypertrophy or cardiac failure accompanied by natriuretic peptides upregulation. Chronic treatment of mice with either catecholamines or doxorubicin increased CR9 activity during the progression of cardiac hypertrophy to failure, which is accompanied by proportional increases in Nppb expression. Conversely, for cultured cardiomyocytes, doxorubicin decreased CR9 activity and Nppb expression, while catecholamines increased both. However, exposing cultured cardiomyocytes to mechanical loads, such as mechanical stretch or hydrostatic pressure, upregulate CR9 activity and Nppb expression even in the presence of doxorubicin. Furthermore, the enhancement of CR9 activity and Nppa and Nppb expressions by either catecholamines or mechanical loads can be blunted by suppressing mechanosensing and mechanotransduction pathways, such as muscle LIM protein (MLP) or myosin tension. Finally, the CR9 element showed a more robust and cell-specific response to mechanical loads than the -520-bp BNP promoter. We concluded that the CR9 element is a novel enhancer that responds to mechanical loads by upregulating natriuretic peptides expression in cardiomyocytes.


Assuntos
Expressão Gênica/fisiologia , Mecanotransdução Celular/fisiologia , Miócitos Cardíacos/metabolismo , Peptídeo Natriurético Encefálico/metabolismo , Animais , Cardiomegalia/metabolismo , Insuficiência Cardíaca/metabolismo , Proteínas com Domínio LIM , Camundongos Transgênicos , Proteínas Musculares , Peptídeo Natriurético Encefálico/genética , Peptídeos Natriuréticos/genética , Peptídeos Natriuréticos/metabolismo , Ratos , Ativação Transcricional/genética , Ativação Transcricional/fisiologia
6.
Am J Med Genet A ; 188(8): 2466-2471, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35703918

RESUMO

Neonatal diabetes mellitus (NDM) with developmental delay and epilepsy is classified as developmental delay, epilepsy, and neonatal diabetes (DEND) syndrome. The majority of DEND syndrome are due to severely damaging variants of K-ATP channels, and few mitochondria-related genes have been reported. We report here two Japanese siblings who were clinically diagnosed with DEND syndrome in whom NARS2 compound heterozygous variants were detected. Patient 1 was a 3-year-old girl and presented with diabetes ketoacidosis at 3 months old. Patient 2 was a 1-year-old boy who presented with severe hyperglycemia and started insulin therapy at 3 days old. After the first episodes, they both presented with severe developmental delay, hearing loss and treatment-resistant epilepsy accompanied by progressive brain atrophy. Whole-exome sequencing revealed compound heterozygous NARS2 p.R159C and p.L217V variants, and the GATA4 p.P407Q variant in both patients. They were treated by mitochondrial supportive therapy of vitamin B1, L-carnitine, and coenzyme Q10. Patient 2 was withdrawn from insulin therapy at 6 months old. This is the first report of NDM in which variants of the NARS2 gene coding mitochondrial protein were detected. Genetic analysis including mitochondrial genes should be considered in patients with neonatal onset diabetes associated with neurogenic symptoms.


Assuntos
Aspartato-tRNA Ligase , Diabetes Mellitus , Epilepsia , Aspartato-tRNA Ligase/genética , Pré-Escolar , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/genética , Epilepsia/diagnóstico , Epilepsia/tratamento farmacológico , Epilepsia/genética , Feminino , Humanos , Hipoglicemiantes , Lactente , Recém-Nascido , Doenças do Recém-Nascido , Insulina , Masculino , Mutação , Transtornos Psicomotores , Irmãos , Síndrome
7.
Endocr J ; 69(9): 1101-1108, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-35387941

RESUMO

Hypertriglyceridemia is caused not only by environmental factors but also by genetic factors. Severe hypertriglyceridemia is prone to complications of acute pancreatitis. Here, we report a whole-exome sequencing (WES) analysis for a young hypertriglyceridemic patient with recurrent acute pancreatitis and the patient's mother. A 28-year-old hypertriglyceridemic female was admitted to our hospital. At 23 years old, a health checkup clarified her hypertriglyceridemia. At the age of 26 and 27, she had repeated acute pancreatitis with severe hypertriglyceridemia (serum triglyceride level were 3,888 mg/dL and 12,080 mg/dL, respectively). The patient's BMI was 29.0 kg/m2, and blood samples under fibrate medication showed triglyceride 451 mg/dL and HbA1c 7.2%. Type V dyslipidemia became more apparent at postprandial state. The WES analysis showed that the patients had two heterozygous variants in Apolipoprotein A5 (APOA5) gene (p.G185C and p.V153M), a heterozygous variant in Apolipoprotein E (APOE) gene (p.R176C), three heterozygous variants in Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene (p.T1220I, p.R1453W and p.V470M). On the other hand, her mother, who had moderate hypertriglyceridemia without acute pancreatitis, had a heterozygous variant in APOA5 gene (p.G185C) and two heterozygous variants in CFTR gene (p.T1220I and p.V470M). These results suggest that the more severe pathology of the patient than her mother might be due to the possible compound heterozygous APOA5 variants, the heterozygous APOE variant, and the possible compound heterozygous CFTR variants. In this case, WES analyses were useful to evaluate not only the causative genes of hypertriglyceridemia (APOA5 and APOE) but also the genes involved in the development of acute pancreatitis (CFTR) simultaneously.


Assuntos
Hipertrigliceridemia , Pancreatite , Doença Aguda , Adulto , Apolipoproteína A-V/genética , Apolipoproteínas E/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Feminino , Ácidos Fíbricos , Hemoglobinas Glicadas , Humanos , Hipertrigliceridemia/complicações , Hipertrigliceridemia/genética , Pancreatite/complicações , Pancreatite/genética , Triglicerídeos , Sequenciamento do Exoma , Adulto Jovem
8.
J Magn Reson Imaging ; 53(5): 1559-1567, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33336504

RESUMO

BACKGROUND: In the management of testicular torsion, estimating the duration of testicular ischemia is essential for deciding on an appropriate surgical treatment, but there are currently limited evaluation methods. PURPOSE: To perform testicular creatine chemical exchange saturation transfer (CrCEST) imaging and to evaluate its ability to accurately estimate the duration of testicular ischemia. STUDY TYPE: Prospective. ANIMAL MODEL: C57BL/6 control mice (n = 6) and testicular ischemia models induced by clamping the spermatic cord (n = 14). Eight of testicular ischemia models were serially imaged at two or three timepoints and a total of 26 images of ischemic testis were obtained. The ischemic duration ranged from 6-42 hours. FIELD STRENGTH/SEQUENCE: 11.7T vertical-bore MRI/segment fast low-angle shot acquisition for CEST. ASSESSMENT: CrCEST imaging was performed and the magnetization transfer ratio for the CrCEST effect (MTRCr** ) was calculated in control mice and testicular ischemia models. Correlation analysis between the duration of testicular ischemia and MTRCr** decline was performed. STATISTICAL TESTS: Paired t-test, and Pearson's correlation analysis. RESULTS: In control mice, the CrCEST effect in testes was significantly more than five times higher than that in skeletal muscle. MTRCr** did not differ significantly between the right and left testes (8.6 ± 0.8 vs. 8.3 ± 0.6, P = 0.96). In testicular ischemia models, MTRCr** of ischemic testes was significantly lower than that of controls (4 ± 2 vs. 8.9 ± 0.6, P < 0.001). Correlation analysis revealed a strong linear correlation between MTRCr** decline and the duration of ischemia (r = 0.96, P < 0.001). DATA CONCLUSION: A decreased CrCEST effect in ischemic testes correlated well with ischemic duration. Testicular CrCEST imaging was useful for accurately estimating the duration of testicular ischemia. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 2.


Assuntos
Creatina , Testículo , Animais , Isquemia/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estudos Prospectivos , Testículo/diagnóstico por imagem
9.
J Magn Reson Imaging ; 54(5): 1457-1465, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34056801

RESUMO

BACKGROUND: When determining treatment strategies for male infertility, it is important to evaluate spermatogenesis and its spatial distribution in the testes. PURPOSE: To investigate the usefulness of creatine chemical exchange saturation transfer (CrCEST) imaging for evaluating spermatogenesis and its spatial distribution. STUDY TYPE: Prospective. ANIMAL MODEL: C57BL/6 control mice (n = 5) and model mice of male infertility induced by whole testis X-ray irradiation (n = 11) or localized X-ray irradiation to lower regions of testes (n = 3). FIELD STRENGTH/SEQUENCE: A 11.7-T vertical-bore magnetic resonance imaging (MRI)/segmented fast low-angle shot acquisition for CEST. ASSESSMENT: The magnetization transfer ratio for the CrCEST effect (MTRCr* ) was calculated in each testis of the control mice and X-ray irradiation model mice at 10, 15, 20, and 30 days after irradiation. Correlation analysis was performed between MTRCr* and Johnsen's score, a histological score for spermatogenesis. In the localized X-ray irradiation model, regional MTRCr* and Johnsen's score were calculated for correlation analysis. STATISTICAL TESTS: Unpaired t-test, one-way analysis of variance with Tukey's HSD test and Pearson's correlation analysis. A P value < 0.05 was considered statistically significant. RESULTS: In the irradiation model, CrCEST imaging revealed a significant linear decrease of MTRCr* after irradiation (control, 8.7 ± 0.6; 10 days, 7.9 ± 0.8; 15 days, 6.5 ± 0.6; 20 days, 5.4 ± 1.0; 30 days, 4.4 ± 0.8). A significant linear correlation was found between MTRCr* and Johnsen's score (Pearson's correlation coefficient (r) = 0.79). In the localized irradiation model, CrCEST imaging visualized a significant regional decrease of MTRCr* in the unshielded region (shielded, 6.9 ± 0.7; unshielded, 4.9 ± 1.0), and a significant linear correlation was found between regional MTRCr* and Johnsen's score (r = 0.78). DATA CONCLUSION: Testicular CrCEST effects correlated well with spermatogenesis. CrCEST imaging was useful for evaluating spermatogenesis and its spatial distribution. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.


Assuntos
Creatina , Testículo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estudos Prospectivos , Espermatogênese , Testículo/diagnóstico por imagem
10.
FASEB J ; 34(2): 2041-2054, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31916304

RESUMO

Most eukaryotic cells generate adenosine triphosphate (ATP) through the oxidative phosphorylation system (OXPHOS) to support cellular activities. In cultured cell-based experiments, we recently identified the hypoxia-inducible protein G0/G1 switch gene 2 (G0s2) as a positive regulator of OXPHOS, and showed that G0s2 protects cultured cardiomyocytes from hypoxia. In this study, we examined the in vivo protective role of G0s2 against hypoxia by generating both loss-of-function and gain-of-function models of g0s2 in zebrafish. Zebrafish harboring transcription activator-like effector nuclease (TALEN)-mediated knockout of g0s2 lost hypoxic tolerance. Conversely, cardiomyocyte-specific transgenic zebrafish hearts exhibited strong tolerance against hypoxia. To clarify the mechanism by which G0s2 protects cardiac function under hypoxia, we introduced a mitochondrially targeted FRET-based ATP biosensor into zebrafish heart to visualize ATP dynamics in in vivo beating hearts. In addition, we employed a mosaic overexpression model of g0s2 to compare the contraction and ATP dynamics between g0s2-expressing and non-expressing cardiomyocytes, side-by-side within the same heart. These techniques revealed that g0s2-expressing cardiomyocyte populations exhibited preserved contractility coupled with maintained intra-mitochondrial ATP concentrations even under hypoxic condition. Collectively, these results demonstrate that G0s2 provides ischemic tolerance in vivo by maintaining ATP production, and therefore represents a promising therapeutic target for hypoxia-related diseases.


Assuntos
Proteínas de Ciclo Celular , Transferência Ressonante de Energia de Fluorescência , Isquemia Miocárdica , Miocárdio , Proteínas de Peixe-Zebra , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosforilação Oxidativa , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
11.
FASEB J ; 34(1): 1859-1871, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914602

RESUMO

The respiratory chain (RC) transports electrons to form a proton motive force that is required for ATP synthesis in the mitochondria. RC disorders cause mitochondrial diseases that have few effective treatments; therefore, novel therapeutic strategies are critically needed. We previously identified Higd1a as a positive regulator of cytochrome c oxidase (CcO) in the RC. Here, we test that Higd1a has a beneficial effect by increasing CcO activity in the models of mitochondrial dysfunction. We first demonstrated the tissue-protective effects of Higd1a via in situ measurement of mitochondrial ATP concentrations ([ATP]mito) in a zebrafish hypoxia model. Heart-specific Higd1a overexpression mitigated the decline in [ATP]mito under hypoxia and preserved cardiac function in zebrafish. Based on the in vivo results, we examined the effects of exogenous HIGD1A on three cellular models of mitochondrial disease; notably, HIGD1A improved respiratory function that was coupled with increased ATP synthesis and demonstrated cellular protection in all three models. Finally, enzyme kinetic analysis revealed that Higd1a significantly increased the maximal velocity of the reaction between CcO and cytochrome c without changing the affinity between them, indicating that Higd1a is a positive modulator of CcO. These results corroborate that Higd1a, or its mimic, provides therapeutic options for the treatment of mitochondrial diseases.


Assuntos
Transporte de Elétrons/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Animais Geneticamente Modificados , Transporte Biológico/fisiologia , Linhagem Celular , Citocromos c/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Células HEK293 , Humanos , Hipóxia/metabolismo , Cinética , Oxirredução , Respiração , Peixe-Zebra/metabolismo
12.
FASEB J ; 34(5): 6399-6417, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32175648

RESUMO

Brugada syndrome (BrS) is an inherited channelopathy responsible for almost 20% of sudden cardiac deaths in patients with nonstructural cardiac diseases. Approximately 70% of BrS patients, the causative gene mutation(s) remains unknown. In this study, we used whole exome sequencing to investigate candidate mutations in a family clinically diagnosed with BrS. A heterozygous 1616G>A substitution (R539Q mutation) was identified in the transmembrane protein 168 (TMEM168) gene of symptomatic individuals. Similar to endogenous TMEM168, both TMEM168 wild-type (WT) and mutant proteins that were ectopically induced in HL-1 cells showed nuclear membrane localization. A significant decrease in Na+ current and Nav 1.5 protein expression was observed in HL-1 cardiomyocytes expressing mutant TMEM168. Ventricular tachyarrhythmias and conduction disorders were induced in the heterozygous Tmem168 1616G>A knock-in mice by pharmacological stimulation, but not in WT mice. Na+ current was reduced in ventricular cardiomyocytes isolated from the Tmem168 knock-in heart, and Nav 1.5 expression was also impaired. This impairment was dependent on increased Nedd4-2 binding to Nav 1.5 and subsequent ubiquitination. Collectively, our results show an association between the TMEM168 1616G>A mutation and arrhythmogenesis in a family with BrS.


Assuntos
Síndrome de Brugada/genética , Predisposição Genética para Doença , Proteínas de Membrana/genética , Mutação , Miócitos Cardíacos/patologia , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Adulto , Animais , Síndrome de Brugada/patologia , Feminino , Humanos , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Linhagem , Adulto Jovem
13.
Am J Med Genet A ; 185(10): 2895-2902, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34047014

RESUMO

The HECT, C2, and WW domain containing E3 ubiquitin protein ligase 2 gene (HECW2) is involved in protein ubiquitination. Several genes associated with protein ubiquitination have been linked to neurodevelopmental disorders. HECW2-related disorder has been established through the identification of de novo variants in HECW2 in patients with neurodevelopmental disorders with hypotonia, seizures, and absent language. Recently, we identified novel HECW2 variants in four Japanese patients with neurodevelopmental disorders. Regarding motor development, two of the patients cannot walk, whereas the other two can walk with an unsteady gait, owing to hypotonia. All HECW2 variants, including those that were previously reported, are missense, and no loss-of-function variants have been identified. Most of the identified variants are located around the HECT domain. These findings suggest that the dominant negative effects of missense variants around the HECT domain may be the mechanism underlying HECW2-related disorder.


Assuntos
Hipotonia Muscular/genética , Transtornos do Neurodesenvolvimento/genética , Convulsões/genética , Ubiquitina-Proteína Ligases/genética , Criança , Pré-Escolar , Exoma/genética , Feminino , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/complicações , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Japão/epidemiologia , Masculino , Hipotonia Muscular/complicações , Hipotonia Muscular/diagnóstico , Hipotonia Muscular/patologia , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/complicações , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/patologia , Convulsões/complicações , Convulsões/diagnóstico , Convulsões/patologia
14.
Circ J ; 85(5): 677-686, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33583869

RESUMO

BACKGROUND: Restrictive cardiomyopathy (RCM) is characterized by impaired ventricular relaxation. Although several mutations were reported in some patients, no mutations were identified in cardiomyocyte expressing genes of other patients, indicating that pathological mechanisms underlying RCM could not be determined by cardiomyocytes only. Cardiac fibroblasts (CFs) are a major cell population in the heart; however, the pathological roles of CFs in cardiomyopathy are not fully understood.Methods and Results:This study established 4 primary culture lines of CFs from RCM patients and analyzed their cellular physiology, the effects on the contraction and relaxation ability of healthy cardiomyocytes under co-culture with CFs, and RNA sequencing. Three of four patients hadTNNI3mutations. There were no significant alterations in cell proliferation, apoptosis, migration, activation, and attachment. However, when CFs from RCM patients were co-cultured with healthy cardiomyocytes, the relaxation velocity of cardiomyocytes was significantly impaired both under direct and indirect co-culture conditions. RNA sequencing revealed that gene expression profiles of CFs in RCM were clearly distinct from healthy CFs. The differential expression gene analysis identified that several extracellular matrix components and cytokine expressions were dysregulated in CFs from RCM patients. CONCLUSIONS: The comprehensive gene expression patterns were altered in RCM-derived CFs, which deteriorated the relaxation ability of cardiomyocytes. The specific changes in extracellular matrix composition and cytokine secretion from CFs might affect pathological behavior of cardiomyocytes in RCM.


Assuntos
Cardiomiopatia Restritiva , Cardiomiopatia Restritiva/genética , Citocinas , Fibroblastos , Humanos , Miócitos Cardíacos
15.
J Biol Chem ; 294(40): 14562-14573, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31371451

RESUMO

Oxidative phosphorylation generates most of the ATP in respiring cells. ATP is an essential energy source, especially in cardiomyocytes because of their continuous contraction and relaxation. Previously, we reported that G0/G1 switch gene 2 (G0S2) positively regulates mitochondrial ATP production by interacting with FOF1-ATP synthase. G0S2 overexpression mitigates ATP decline in cardiomyocytes and strongly increases their hypoxic tolerance during ischemia. Here, we show that G0S2 protein undergoes proteasomal degradation via a cytosolic molecular triage system and that inhibiting this process increases mitochondrial ATP production in hypoxia. First, we performed screening with a library of siRNAs targeting ubiquitin-related genes and identified RING finger protein 126 (RNF126) as an E3 ligase involved in G0S2 degradation. RNF126-deficient cells exhibited prolonged G0S2 protein turnover and reduced G0S2 ubiquitination. BCL2-associated athanogene 6 (BAG6), involved in the molecular triage of nascent membrane proteins, enhanced RNF126-mediated G0S2 ubiquitination both in vitro and in vivo Next, we found that Glu-44 in the hydrophobic region of G0S2 acts as a degron necessary for G0S2 polyubiquitination and proteasomal degradation. Because this degron was required for an interaction of G0S2 with BAG6, an alanine-replaced G0S2 mutant (E44A) escaped degradation. In primary cultured cardiomyocytes, both overexpression of the G0S2 E44A mutant and RNF126 knockdown effectively attenuated ATP decline under hypoxic conditions. We conclude that the RNF126/BAG6 complex contributes to G0S2 degradation and that interventions to prevent G0S2 degradation may offer a therapeutic strategy for managing ischemic diseases.


Assuntos
Proteínas de Ciclo Celular/genética , Chaperonas Moleculares/genética , Isquemia Miocárdica/genética , Fosforilação Oxidativa , Ubiquitina-Proteína Ligases/genética , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Alanina/genética , Proteínas de Ciclo Celular/química , Regulação da Expressão Gênica/genética , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Mitocôndrias/genética , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Mutação , Isquemia Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/genética
16.
Circulation ; 139(18): 2157-2169, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30764634

RESUMO

BACKGROUND: Bradyarrhythmia is a common clinical manifestation. Although the majority of cases are acquired, genetic analysis of families with bradyarrhythmia has identified a growing number of causative gene mutations. Because the only ultimate treatment for symptomatic bradyarrhythmia has been invasive surgical implantation of a pacemaker, the discovery of novel therapeutic molecular targets is necessary to improve prognosis and quality of life. METHODS: We investigated a family containing 7 individuals with autosomal dominant bradyarrhythmias of sinus node dysfunction, atrial fibrillation with slow ventricular response, and atrioventricular block. To identify the causative mutation, we conducted the family-based whole exome sequencing and genome-wide linkage analysis. We characterized the mutation-related mechanisms based on the pathophysiology in vitro. After generating a transgenic animal model to confirm the human phenotypes of bradyarrhythmia, we also evaluated the efficacy of a newly identified molecular-targeted compound to upregulate heart rate in bradyarrhythmias by using the animal model. RESULTS: We identified one heterozygous mutation, KCNJ3 c.247A>C, p.N83H, as a novel cause of hereditary bradyarrhythmias in this family. KCNJ3 encodes the inwardly rectifying potassium channel Kir3.1, which combines with Kir3.4 (encoded by KCNJ5) to form the acetylcholine-activated potassium channel ( IKACh channel) with specific expression in the atrium. An additional study using a genome cohort of 2185 patients with sporadic atrial fibrillation revealed another 5 rare mutations in KCNJ3 and KCNJ5, suggesting the relevance of both genes to these arrhythmias. Cellular electrophysiological studies revealed that the KCNJ3 p.N83H mutation caused a gain of IKACh channel function by increasing the basal current, even in the absence of m2 muscarinic receptor stimulation. We generated transgenic zebrafish expressing mutant human KCNJ3 in the atrium specifically. It is interesting to note that the selective IKACh channel blocker NIP-151 repressed the increased current and improved bradyarrhythmia phenotypes in the mutant zebrafish. CONCLUSIONS: The IKACh channel is associated with the pathophysiology of bradyarrhythmia and atrial fibrillation, and the mutant IKACh channel ( KCNJ3 p.N83H) can be effectively inhibited by NIP-151, a selective IKACh channel blocker. Thus, the IKACh channel might be considered to be a suitable pharmacological target for patients who have bradyarrhythmia with a gain-of-function mutation in the IKACh channel.


Assuntos
Fibrilação Atrial , Bloqueio Atrioventricular , Bradicardia , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G , Doenças Genéticas Inatas , Mutação de Sentido Incorreto , Substituição de Aminoácidos , Animais , Animais Geneticamente Modificados , Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Fibrilação Atrial/patologia , Fibrilação Atrial/fisiopatologia , Bloqueio Atrioventricular/genética , Bloqueio Atrioventricular/metabolismo , Bloqueio Atrioventricular/patologia , Bloqueio Atrioventricular/fisiopatologia , Benzopiranos/farmacologia , Bradicardia/genética , Bradicardia/metabolismo , Bradicardia/patologia , Bradicardia/fisiopatologia , Técnicas Eletrofisiológicas Cardíacas , Feminino , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/antagonistas & inibidores , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Doenças Genéticas Inatas/patologia , Doenças Genéticas Inatas/fisiopatologia , Humanos , Masculino , Xenopus laevis , Peixe-Zebra
17.
J Magn Reson Imaging ; 51(2): 563-570, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31228359

RESUMO

BACKGROUND: Creatine chemical exchange saturation transfer (CrCEST) imaging is expected to be a novel evaluation method of muscular energy metabolism. PURPOSE: To develop CrCEST imaging of mouse skeletal muscle and to validate this technique by measuring changes in Cr concentration of ischemic hindlimbs. STUDY TYPE: Prospective. ANIMAL MODEL: C57BL/6 mice (n = 6), mild hindlimb ischemic mice (n = 6), and severe hindlimb ischemic mice (n = 6). FIELD STRENGTH/SEQUENCE: Magnetic resonance angiography (MRA), CrCEST imaging, and phosphorus magnetic resonance spectroscopy (31 P MRS) obtained at 11.7T. ASSESSMENT: MRA and 31 P MRS were performed to confirm the presence of ischemia following the compression by rubber tourniquet. CrCEST imaging was performed and magnetization transfer ratio asymmetry (MTRasym ), which reflects Cr concentration, and was calculated in severe ischemia models, mild ischemia models, and control mice. Follow-up CrCEST imaging was performed after the release of ischemia in the mild ischemia models. STATISTICAL TESTS: Mean ± SD, one-way analysis of variance (ANOVA) with Tukey's HSD test, unpaired or paired t-test. RESULTS: MRA revealed the loss of blood flow of the femoral artery in the ischemic hindlimb. 31 P MRS revealed different degrees of PCr decrease in severe and mild ischemic hindlimb (n = 3 per group, normal hindlimb: 1.0 ± 0, mild ischemic hindlimb: 0.77 ± 0.13, severe ischemic hindlimb: 0 ± 0). CrCEST imaging inversely revealed a significant stepwise increase in the MTRasym ratio of ischemic hindlimbs compared with controls (control, mild ischemia, and severe ischemia; 0.99 ± 0.04, 1.36 ± 0.08, and 1.59 ± 0.23, respectively, P < 0.0001). In addition, follow-up CrCEST imaging after the release of ischemia revealed normalization of the MTRasym ratios (recovered hindlimb: 1.01 ± 0.05). DATA CONCLUSION: We demonstrated an increase in the MTRasym of ischemic hindlimbs, along with a decrease of PCr. We demonstrated the normalization of MTRasym after the release of ischemia and developed CrCEST imaging of mouse skeletal muscle. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;51:563-570.


Assuntos
Creatina , Músculo Esquelético , Animais , Membro Posterior , Isquemia/diagnóstico por imagem , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/diagnóstico por imagem , Estudos Prospectivos
18.
Hum Mol Genet ; 26(1): 173-183, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28013294

RESUMO

Mucopolysaccharidoses (MPS) are a group of genetic deficiencies of lysosomal enzymes that catabolize glycosaminoglycans (GAG). Here we describe a novel MPS-like disease caused by a specific mutation in the VPS33A gene. We identified several Yakut patients showing typical manifestations of MPS: coarse facial features, skeletal abnormalities, hepatosplenomegaly, respiratory problems, mental retardation, and excess secretion of urinary GAG. However, these patients could not be diagnosed enzymatically as MPS. They showed extremely high levels of plasma heparan sulphate (HS, one of GAG); 60 times the normal reference range and 6 times that of MPS patients. Additionally, most patients developed heart, kidney, and hematopoietic disorders, which are not typical symptoms for conventional MPS, leading to a fatal outcome between 1 and 2-years old. Using whole exome and Sanger sequencing, we identified homozygous c.1492C > T (p.Arg498Trp) mutations in the VPS33A gene of 13 patients. VPS33A is involved in endocytic and autophagic pathways, but the identified mutation did not affect either of these pathways. Lysosomal over-acidification and HS accumulation were detected in patient-derived and VPS33A-depleted cells, suggesting a novel role of this gene in lysosomal functions. We hence propose a new type of MPS that is not caused by an enzymatic deficiency.


Assuntos
Glicosaminoglicanos/metabolismo , Mucopolissacaridoses/genética , Mucopolissacaridoses/metabolismo , Mutação/genética , Proteínas de Transporte Vesicular/genética , Adolescente , Adulto , Estudos de Casos e Controles , Células Cultivadas , Criança , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Masculino , Linhagem , Índice de Gravidade de Doença , Adulto Jovem
19.
J Neuroinflammation ; 16(1): 162, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31382992

RESUMO

BACKGROUND: The spectrum of classical and non-classical HLA genes related to the risk of multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) in the Japanese population has not been studied in detail. We conducted a case-control analysis of classical and non-classical HLA genes. METHODS: We used next-generation sequencing (NGS)-based HLA genotyping methods for mapping risk for 45 MS patients, 31 NMOSD patients, and 429 healthy controls. We evaluated the association of the HLA variants with the risk of MS and NMOSD using logistic regression analysis and Fisher's exact test. RESULTS: We confirmed that HLA-DRB1*15:01 showed the strongest association with MS (P = 2.1 × 10-5; odds ratio [OR] = 3.44, 95% confidence interval [95% CI] = 1.95-6.07). Stepwise conditional analysis identified HLA-DRB1*04:05, HLA-B*39:01, and HLA-B*15:01 as being associated with independent MS susceptibility (PConditional < 8.3 × 10-4). With respect to amino acid polymorphisms in HLA genes, we found that phenylalanine at HLA-DQß1 position 9 had the strongest effect on MS susceptibility (P = 3.7 × 10-8, OR = 3.48, 95% CI = 2.23-5.43). MS risk at HLA-DQß1 Phe9 was independent of HLA-DRB1*15:01 (PConditional = 1.5 × 10-5, OR = 2.91, 95% CI = 1.79-4.72), while HLA-DRB1*15:01 was just significant when conditioned on HLA-DQß1 Phe9 (PConditional = 0.037). Regarding a case-control analysis for NMOSD, HLA-DQA1*05:03 had a significant association with NMOSD (P = 1.5 × 10-4, OR = 6.96, 95% CI = 2.55-19.0). CONCLUSIONS: We identified HLA variants associated with the risk of MS and NMOSD. Our study contributes to the understanding of the genetic architecture of MS and NMOSD in the Japanese population.


Assuntos
Predisposição Genética para Doença , Antígenos HLA/genética , Esclerose Múltipla/genética , Polimorfismo de Nucleotídeo Único , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Estudos de Casos e Controles , Feminino , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Japão , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/imunologia , Adulto Jovem
20.
J Periodontal Res ; 54(3): 199-206, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30303256

RESUMO

To identify the genetic risk factors for aggressive periodontitis (AgP), it is important to understand the progression and pathogenesis of AgP. The purpose of this review was to summarize the genetic risk factors for AgP identified through a case-control genomewide association study (GWAS) and replication study. The initial studies to identify novel AgP risk factors were potentially biased because they relied on previous studies. To overcome this kind of issue, an unbiased GWAS strategy was introduced to identify genetic risk factors for various diseases. Currently, three genes glycosyltransferase 6 domain containing 1 (GLT6D1), defensin α1 and α3 (DEFA1A3), and sialic acid-binding Ig-like lectin 5 (SIGLEC5) that reach the threshold for genomewide significance have been identified as genetic risk factors for AgP through a case-control GWAS.


Assuntos
Periodontite Agressiva/genética , Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/genética , Periodontite Crônica/genética , Estudo de Associação Genômica Ampla , Glicosiltransferases/genética , Lectinas/genética , Peptídeos Cíclicos/genética , alfa-Defensinas/genética , Estudos de Casos e Controles , Humanos , Polimorfismo de Nucleotídeo Único , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa