Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Neurochem ; 166(2): 201-214, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37070532

RESUMO

A neurodegenerative disorder is a condition that causes a degeneration of neurons in the central nervous system, leading to cognitive impairment and movement disorders. An accumulation of oxidative stress in neurons contributes to the pathogenesis of neurodegenerative disorders. Over the past few years, several studies have suggested that short-chain fatty acids, metabolites of the gut microbiota, might have a beneficial effect in neurodegenerative disorders. A G protein-coupled receptor 43 (GPR43) plays an important role in modulating oxidative stress and inflammatory processes in several tissues. Interestingly, the downstream signaling pathways activated by GPR43 to modulate oxidative stress differ among tissues. Moreover, the cellular mechanisms underlying GPR43 activation in neuronal cells to handle oxidative stress remain unclear. In this present study, we tested the role of GPR43, which is activated by short-chain fatty acids or a specific GPR43 agonist, in an oxidative stress-induced neuronal cell line (SH-SY5Y) injury. Our findings suggest that a combination of short-chain fatty acids with a physiological function could protect neurons from H2 O2 -induced cell damage. The effect of short-chain fatty acids mixture was abolished by pretreatment with a GPR43 antagonist, indicating this protective effect is a GPR43-dependent mechanism. In addition, a specific GPR43 agonist shows a similar result to that found in short-chain fatty acids mixture. Furthermore, our findings indicate that the downstream activation of GPR43 to protect against oxidative stress-induced neuronal injury is a biased Gq activation signaling of GPR43, which results in the prevention of H2 O2 -induced neuronal apoptosis. In conclusion, our results show new insight into the cellular mechanism of GPR43 and its neuroprotective effect. Taken together, this newly discovered finding suggests that activation of the biased Gq signaling pathway of GPR43 might be a potential therapeutic target for aging-related neurodegeneration.


Assuntos
Neuroblastoma , Fármacos Neuroprotetores , Humanos , Fármacos Neuroprotetores/farmacologia , Ácidos Graxos Voláteis/farmacologia , Transdução de Sinais , Estresse Oxidativo , Receptores Acoplados a Proteínas G/metabolismo
2.
Brain Behav Immun ; 96: 113-126, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34052361

RESUMO

Peripheral inflammation is known to impact brain function, resulting in lethargy, loss of appetite and impaired cognitive abilities. However, the channels for information transfer from the periphery to the brain, the corresponding signaling molecules and the inflammation-induced interaction between microglia and neurons remain obscure. Here, we used longitudinal in vivo two-photon Ca2+ imaging to monitor neuronal activity in the mouse cortex throughout the early (initiation) and late (resolution) phases of peripheral inflammation. Single peripheral lipopolysaccharide injection induced a substantial but transient increase in ongoing neuronal activity, restricted to the initiation phase, whereas the impairment of visual processing was selectively observed during the resolution phase of systemic inflammation. In the frontal/motor cortex, the initiation phase-specific cortical hyperactivity was seen in the deep (layer 5) and superficial (layer 2/3) pyramidal neurons but not in the axons coming from the somatosensory cortex, and was accompanied by reduced activity of layer 2/3 cortical interneurons. Moreover, the hyperactivity was preserved after depletion of microglia and in NLRP3-/- mice but absent in TNF-α-/- mice. Together, these data identify microglia-independent and TNF-α-mediated reduction of cortical inhibition as a likely cause of the initiation phase-specific cortical hyperactivity and reveal the resolution phase-specific impairment of sensory processing, presumably caused by activated microglia.


Assuntos
Inflamação , Microglia , Animais , Camundongos , Neurônios , Células Piramidais , Córtex Somatossensorial
3.
Proc Natl Acad Sci U S A ; 115(6): E1279-E1288, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29358403

RESUMO

Neuronal hyperactivity is the emerging functional hallmark of Alzheimer's disease (AD) in both humans and different mouse models, mediating an impairment of memory and cognition. The mechanisms underlying neuronal hyperactivity remain, however, elusive. In vivo Ca2+ imaging of somatic, dendritic, and axonal activity patterns of cortical neurons revealed that both healthy aging and AD-related mutations augment neuronal hyperactivity. The AD-related enhancement occurred even without amyloid deposition and neuroinflammation, mainly due to presenilin-mediated dysfunction of intracellular Ca2+ stores in presynaptic boutons, likely causing more frequent activation of synaptic NMDA receptors. In mutant but not wild-type mice, store emptying reduced both the frequency and amplitude of presynaptic Ca2+ transients and, most importantly, normalized neuronal network activity. Postsynaptically, the store dysfunction was minor and largely restricted to hyperactive cells. These findings identify presynaptic Ca2+ stores as a key element controlling AD-related neuronal hyperactivity and as a target for disease-modifying treatments.


Assuntos
Doença de Alzheimer/patologia , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Modelos Animais de Doenças , Inflamação/patologia , Neurônios/patologia , Presenilina-1/fisiologia , Envelhecimento , Doença de Alzheimer/metabolismo , Animais , Humanos , Inflamação/metabolismo , Camundongos , Neurônios/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/patologia , Transdução de Sinais
4.
Neurobiol Dis ; 121: 315-326, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30366066

RESUMO

Besides deficits in memory and cognition, impaired visual processing is common for Alzheimer's disease (AD) patients and mouse models of AD but underlying mechanisms still remain unclear. Using in vivo Ca2+ imaging of the mouse primary visual cortex (V1) we tested whether such impairment is caused by neuronal hyperactivity, an emerging functional hallmark of AD. Profound neuronal hyperactivity was indeed found in V1 of APPSWE/PS1G384A and even of PS1G384A mice, presenting neither with plaque accumulation nor with neuroinflammation. This hyperactivity was accompanied by over-responsiveness to visual stimuli and impaired visual tuning properties of individual neurons, largely caused by insufficient suppression of responses to non-preferred orientation/direction stimuli. Moreover, visual stimulation robustly suppressed the ongoing spontaneous activity in WT but not in APPSWE/PS1G384A mice. Emptying intracellular Ca2+ stores significantly reduced neuronal hyperactivity and the pathological over-responsiveness to visual stimuli, but could not rescue stimulus-induced suppression of spontaneous activity and impaired tuning properties of individual cells. Thus, our data identify the AD-mediated dysfunction of intracellular Ca2+ stores as a main cause of pathologically increased visual responsiveness in APPSWE/PS1G384A mice. At the same time, the impairment of visual tuning and the stimulus-induced suppression of spontaneous activity, identified in this study, are likely caused by different mechanisms as, for example, dysfunction of local interneurons.


Assuntos
Doença de Alzheimer/fisiopatologia , Sinalização do Cálcio , Neurônios/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Modelos Animais de Doenças , Potenciais Evocados Visuais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estimulação Luminosa
5.
Int J Mol Sci ; 20(3)2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30704036

RESUMO

Brain aging is characterized by a chronic, low-grade inflammatory state, promoting deficits in cognition and the development of age-related neurodegenerative diseases. Malfunction of microglia, the brain-resident immune cells, was suggested to play a critical role in neuroinflammation, but the mechanisms underlying this malfunctional phenotype remain unclear. Specifically, the age-related changes in microglial Ca2+ signaling, known to be linked to its executive functions, are not well understood. Here, using in vivo two-photon imaging, we characterize intracellular Ca2+ signaling and process extension of cortical microglia in young adult (2⁻4-month-old), middle-aged (9⁻11-month-old), and old (18⁻21-month-old) mice. Our data revealed a complex and nonlinear dependency of the properties of intracellular Ca2+ signals on an animal's age. While the fraction of cells displaying spontaneous Ca2+ transients progressively increased with age, the frequencies and durations of the spontaneous Ca2+ transients followed a bell-shaped relationship, with the most frequent and largest Ca2+ transients seen in middle-aged mice. Moreover, in old mice microglial processes extending toward an ATP source moved faster but in a more disorganized manner, compared to young adult mice. Altogether, these findings identify two distinct phenotypes of aging microglia: a reactive phenotype, abundantly present in middle-aged animals, and a dysfunctional/senescent phenotype ubiquitous in old mice.


Assuntos
Encéfalo/metabolismo , Microglia/metabolismo , Envelhecimento/fisiologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Cognição/fisiologia , Feminino , Envelhecimento Saudável/fisiologia , Masculino , Camundongos , Microglia/fisiologia
6.
Pflugers Arch ; 469(11): 1471-1481, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28741179

RESUMO

Liver X receptor (LXR) is transcriptional factor that plays an important role in the regulation of energy metabolism such as cholesterol, lipid, and glucose metabolism as well as membrane transporters and channels. Using both in vitro and in vivo models, LXR regulation of the expression and function of renal organic cation transporter 2 (OCT2) was observed. Synthetic LXR agonist (GW3965) and endogenous LXR agonist (22R-hydroxycholesterol) significantly reduced the uptake of 3H-MPP+, a prototypic substrate of OCT2, in both OCT2- Chinese hamster ovary K1 and human renal proximal tubular cells (RPTEC/TERT1). GW3965 decreased transport activity of OCT2 via a reduction of the maximal transport rate of MPP+ without affecting transporter affinity. The inhibitory effect of GW3965 was attenuated by co-treatment with LXR antagonist (fenofibrate) indicating the inhibition was LXR-dependent mechanism. In addition, co-treatment with a retinoic X receptor (RXR) ligand, 9-cis retinoic acid enhanced the inhibitory effect of GW3965, indicating negative regulation of OCT2 transport activity by the LXR/RXR complex. Treatment RPTEC/TERT1 cells with GW3965 significantly reduced OCT2 protein expression without changing mRNA expression. In parallel, the effect of LXR activation on OCT2 function was investigated in intact mouse kidney. Treating mice with 50 mg/kg BW T0901317 for 14 days significantly decreased 3H-MPP+ uptake into renal cortical slices, correlating with decreased OCT2 protein expression in renal cortex without changes in mRNA expression levels. Taken together, LXR/RXR activation downregulates the protein expression and function of OCT2 in renal proximal tubule, suggesting LXR might affect the total profile of renal excretion of cationic compounds.


Assuntos
Transporte Biológico/fisiologia , Cátions/metabolismo , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/fisiologia , Receptores X do Fígado/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transportador 2 de Cátion Orgânico/metabolismo , Animais , Benzoatos/farmacologia , Benzilaminas/farmacologia , Transporte Biológico/efeitos dos fármacos , Células CHO , Linhagem Celular , Cricetulus , Hidrocarbonetos Fluorados/farmacologia , Hidroxicolesteróis/farmacologia , Túbulos Renais Proximais/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Sulfonamidas/farmacologia
7.
J Transl Med ; 14(1): 324, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27876057

RESUMO

With the wealth of data accumulated from completely sequenced genomes and other high-throughput experiments, global studies of biological systems, by simultaneously investigating multiple biological entities (e.g. genes, transcripts, proteins), has become a routine. Network representation is frequently used to capture the presence of these molecules as well as their relationship. Network biology has been widely used in molecular biology and genetics, where several network properties have been shown to be functionally important. Here, we discuss how such methodology can be useful to translational biomedical research, where scientists traditionally focus on one or a small set of genes, diseases, and drug candidates at any one time. We first give an overview of network representation frequently used in biology: what nodes and edges represent, and review its application in preclinical research to date. Using cancer as an example, we review how network biology can facilitate system-wide approaches to identify targeted small molecule inhibitors. These types of inhibitors have the potential to be more specific, resulting in high efficacy treatments with less side effects, compared to the conventional treatments such as chemotherapy. Global analysis may provide better insight into the overall picture of human diseases, as well as identify previously overlooked problems, leading to rapid advances in medicine. From the clinicians' point of view, it is necessary to bridge the gap between theoretical network biology and practical biomedical research, in order to improve the diagnosis, prevention, and treatment of the world's major diseases.


Assuntos
Médicos , Biologia de Sistemas , Pesquisa Translacional Biomédica , Humanos , Neoplasias/metabolismo , Medicina de Precisão , Recursos Humanos
8.
FASEB J ; 28(2): 705-14, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24186965

RESUMO

Aquaporin-4 (AQP4), the principal water channel in astrocytes, is involved in brain water movement, inflammation, and neuroexcitation. In this study, there was strong neuroprotection in mice lacking AQP4 in a model of global cerebral ischemia produced by transient, bilateral carotid artery occlusion (BCAO). Survival and neurological outcome were greatly improved in the AQP4(-/-) vs. AQP4(+/+) mice after occlusion, with large and robust differences in both outbred (CD1) and inbred (C57bl/6) mouse strains without or with mechanical ventilation. Improved survival was also seen in mice lacking the scaffold protein α-syntrophin, which manifest reduced astrocyte water permeability secondary to defective AQP4 plasma membrane targeting. Intracranial pressure elevation and brain water accumulation were much reduced in the AQP4(-/-) vs. AQP4(+/+) mice after carotid artery occlusion, as were blood-brain barrier (BBB) disruption and neuronal loss. Brain slices from AQP4(-/-) mice showed significantly reduced cell swelling and cytotoxicity in response to oxygen-glucose deprivation, compared with slices from AQP4(+/+) mice. Our findings suggest that the neuroprotective effect of AQP4 deletion in global cerebral ischemia involves reduced astrocyte swelling and brain water accumulation, resulting in reduced BBB disruption, inflammation, and neuron death. AQP4 water transport inhibition may improve survival and neurological outcome after cardiac arrest and in other conditions associated with global cerebral ischemia.


Assuntos
Aquaporina 4/metabolismo , Isquemia Encefálica/metabolismo , Animais , Aquaporina 4/genética , Isquemia Encefálica/genética , Isquemia Encefálica/fisiopatologia , Hipocampo/metabolismo , Hipocampo/patologia , Imuno-Histoquímica , Pressão Intracraniana/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
9.
J Neuroinflammation ; 11: 16, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24468108

RESUMO

BACKGROUND: Although optic neuritis (ON) is a defining feature of neuromyelitis optica (NMO), appropriate animal models of NMO ON are lacking. Most NMO patients are seropositive for immunoglobulin G autoantibodies (NMO-IgG) against the astrocyte water channel aquaporin-4 (AQP4). METHODS: Several approaches were tested to develop a robust, passive-transfer mouse model of NMO ON, including NMO-IgG and complement delivery by: (i) retrobulbar infusion; (ii) intravitreal injection; (iii) a single intracranial injection near the optic chiasm; and (iv) 3-days continuous intracranial infusion near the optic chiasm. RESULTS: Little ON or retinal pathology was seen using approaches (i) to (iii). Using approach (iv), however, optic nerves showed characteristic NMO pathology, with loss of AQP4 and glial fibrillary acidic protein immunoreactivity, granulocyte and macrophage infiltration, deposition of activated complement, demyelination and axonal injury. Even more extensive pathology was created in mice lacking complement inhibitor protein CD59, or using a genetically modified NMO-IgG with enhanced complement effector function, including significant loss of retinal ganglion cells. In control studies, optic nerve pathology was absent in treated AQP4-deficient mice, or in wild-type mice receiving control (non-NMO) IgG and complement. CONCLUSION: Passive transfer of NMO-IgG and complement by continuous infusion near the optic chiasm in mice is sufficient to produce ON with characteristic NMO pathology. The mouse model of NMO ON should be useful in further studies of NMO pathogenesis mechanisms and therapeutics.


Assuntos
Aquaporina 4/imunologia , Doenças Desmielinizantes/etiologia , Imunização Passiva/efeitos adversos , Imunoglobulina G/imunologia , Neuromielite Óptica/imunologia , Animais , Aquaporina 4/deficiência , Antígenos CD59/genética , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuromielite Óptica/complicações , Neuromielite Óptica/etiologia , Nervo Óptico/imunologia , Nervo Óptico/metabolismo , Retina/imunologia , Retina/metabolismo , Retina/patologia , Células Ganglionares da Retina/metabolismo
10.
Acta Neuropathol ; 127(4): 539-51, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24190619

RESUMO

Animal models of neuromyelitis optica (NMO) are needed for elucidation of disease mechanisms and for testing new therapeutics. Prior animal models of NMO involved administration of human anti-aquaporin-4 immunoglobulin G antibody (NMO-IgG) to rats with pre-existing neuroinflammation, or to naïve mice supplemented with human complement. We report here the development of NMO pathology following passive transfer of NMO-IgG to naïve rats. A single intracerebral infusion of NMO-IgG to adult Lewis rats produced robust lesions around the needle track in 100 % of rats; at 5 days there was marked loss of aquaporin-4 (AQP4), glial fibrillary acidic protein (GFAP) and myelin, granulocyte and macrophage infiltration, vasculocentric complement deposition, blood-brain barrier disruption, microglial activation and neuron death. Remarkably, a distinct 'penumbra' was seen around lesions, with loss of AQP4 but not of GFAP or myelin. No lesions or penumbra were seen in rats receiving control IgG. The size of the main lesion with loss of myelin was greatly reduced in rats made complement-deficient by cobra venom factor or administered NMO-IgG lacking complement-dependent cytotoxicity (CDC) effector function. However, the penumbra was seen under these conditions, suggesting a complement-independent pathogenesis mechanism. The penumbra was absent with NMO-IgG lacking both CDC and antibody-dependent cellular cytotoxicity (ADCC) effector functions. Finally, lesion size was significantly reduced after macrophage depletion with clodronate liposomes. These results: (i) establish a robust, passive-transfer model of NMO in rats that does not require pre-existing neuroinflammation or complement administration; (ii) implicate ADCC as responsible for a unique type of pathology also seen in human NMO; and (iii) support a pathogenic role of macrophages in NMO.


Assuntos
Aquaporina 4/imunologia , Imunoglobulina G , Neuromielite Óptica/induzido quimicamente , Neuromielite Óptica/patologia , Animais , Animais Recém-Nascidos , Barreira Hematoencefálica/patologia , Bucladesina/farmacologia , Células CHO , Córtex Cerebral/citologia , Cricetulus , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Imunoglobulina G/sangue , Camundongos , Bainha de Mielina/patologia , Proteínas do Tecido Nervoso/metabolismo , Infiltração de Neutrófilos/efeitos dos fármacos , Infiltração de Neutrófilos/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos , Ratos Endogâmicos Lew , Transfecção
11.
Sci Rep ; 14(1): 9177, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649404

RESUMO

Gaucher disease (GD) is a lysosomal storage disorder caused by a mutation in the GBA1 gene, responsible for encoding the enzyme Glucocerebrosidase (GCase). Although neuronal death and neuroinflammation have been observed in the brains of individuals with neuronopathic Gaucher disease (nGD), the exact mechanism underlying neurodegeneration in nGD remains unclear. In this study, we used two induced pluripotent stem cells (iPSCs)-derived neuronal cell lines acquired from two type-3 GD patients (GD3-1 and GD3-2) to investigate the mechanisms underlying nGD by biochemical analyses. These iPSCs-derived neuronal cells from GD3-1 and GD3-2 exhibit an impairment in endoplasmic reticulum (ER) calcium homeostasis and an increase in unfolded protein response markers (BiP and CHOP), indicating the presence of ER stress in nGD. A significant increase in the BAX/BCL-2 ratio and an increase in Annexin V-positive cells demonstrate a notable increase in apoptotic cell death in GD iPSCs-derived neurons, suggesting downstream signaling after an increase in the unfolded protein response. Our study involves the establishment of iPSCs-derived neuronal models for GD and proposes a possible mechanism underlying nGD. This mechanism involves the activation of ER stress and the unfolded protein response, ultimately leading to apoptotic cell death in neurons.


Assuntos
Estresse do Retículo Endoplasmático , Doença de Gaucher , Células-Tronco Pluripotentes Induzidas , Neurônios , Resposta a Proteínas não Dobradas , Doença de Gaucher/metabolismo , Doença de Gaucher/patologia , Doença de Gaucher/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Humanos , Neurônios/metabolismo , Neurônios/patologia , Apoptose , Cálcio/metabolismo , Diferenciação Celular , Linhagem Celular
12.
Mol Pharmacol ; 83(6): 1268-75, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23571414

RESUMO

Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system caused by binding of pathogenic IgG autoantibodies (NMO-IgG) to astrocyte water channel aquaporin-4 (AQP4). Astrocyte damage and downstream inflammation require NMO-IgG effector function to initiate complement-dependent cytotoxicity (CDC) and antibody-dependent cell-mediated cytotoxicity (ADCC). Here, we evaluated the potential therapeutic utility of the bacterial enzyme IdeS (IgG-degrading enzyme of Streptococcus pyogenes), which selectively cleaves IgG antibodies to yield Fc and F(ab')(2) fragments. In AQP4-expressing cell cultures, IdeS treatment of monoclonal NMO-IgGs and NMO patient sera abolished CDC and ADCC, even when IdeS was added after NMO-IgG was bound to AQP4. Binding of NMO-IgG to AQP4 was similar to that of the NMO-F(ab')(2) generated by IdeS cleavage. NMO-F(ab')(2) competitively displaced pathogenic NMO-IgG, preventing cytotoxicity, and the Fc fragments generated by IdeS cleavage reduced CDC and ADCC. IdeS efficiently cleaved NMO-IgG in mice in vivo, and greatly reduced NMO lesions in mice administered NMO-IgG and human complement. IgG-selective cleavage by IdeS thus neutralizes NMO-IgG pathogenicity, and yields therapeutic F(ab')(2) and Fc fragments. IdeS treatment, by therapeutic apheresis or direct administration, may be beneficial in NMO.


Assuntos
Aquaporina 4/imunologia , Autoanticorpos/metabolismo , Proteínas de Bactérias/farmacologia , Cisteína Endopeptidases/farmacologia , Citotoxicidade Imunológica , Imunoglobulina G/metabolismo , Neuromielite Óptica/imunologia , Animais , Citotoxicidade Celular Dependente de Anticorpos , Proteínas de Bactérias/uso terapêutico , Células CHO , Proteínas do Sistema Complemento/imunologia , Cricetinae , Cricetulus , Cisteína Endopeptidases/uso terapêutico , Humanos , Imunoglobulina G/imunologia , Camundongos , Neuromielite Óptica/patologia , Neuromielite Óptica/terapia
13.
Acta Neuropathol ; 125(6): 829-40, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23677375

RESUMO

Neuromyelitis optica (NMO) is an autoimmune disorder with inflammatory demyelinating lesions in the central nervous system, particularly in the spinal cord and optic nerve. NMO pathogenesis is thought to involve binding of anti-aquaporin-4 (AQP4) autoantibodies to astrocytes, which causes complement-dependent cytotoxicity (CDC) and downstream inflammation leading to oligodendrocyte and neuronal injury. Vasculocentric deposition of activated complement is a prominent feature of NMO pathology. Here, we show that a neutralizing monoclonal antibody against the C1q protein in the classical complement pathway prevents AQP4 autoantibody-dependent CDC in cell cultures and NMO lesions in ex vivo spinal cord slice cultures and in mice. A monoclonal antibody against human C1q with 11 nM binding affinity prevented CDC caused by NMO patient serum in AQP4-transfected cells and primary astrocyte cultures, and prevented complement-dependent cell-mediated cytotoxicity (CDCC) produced by natural killer cells. The anti-C1q antibody prevented astrocyte damage and demyelination in mouse spinal cord slice cultures exposed to AQP4 autoantibody and human complement. In a mouse model of NMO produced by intracerebral injection of AQP4 autoantibody and human complement, the inflammatory demyelinating lesions were greatly reduced by intracerebral administration of the anti-C1q antibody. These results provide proof-of-concept for C1q-targeted monoclonal antibody therapy in NMO. Targeting of C1q inhibits the classical complement pathway directly and causes secondary inhibition of CDCC and the alternative complement pathway. As C1q-targeted therapy leaves the lectin complement activation pathway largely intact, its side-effect profile is predicted to differ from that of therapies targeting downstream complement proteins.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Complemento C1q/antagonistas & inibidores , Fatores Imunológicos/uso terapêutico , Neuromielite Óptica/patologia , Neuromielite Óptica/prevenção & controle , Animais , Aquaporina 4/fisiologia , Técnicas de Cultura de Células , Ativação do Complemento , Cricetulus , Modelos Animais de Doenças , Humanos , Camundongos , Neuromielite Óptica/etiologia
14.
Acta Neuropathol ; 126(5): 699-709, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23995423

RESUMO

Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system that can cause paralysis and blindness. The pathogenesis of NMO involves binding of immunoglobulin G autoantibodies to aquaporin-4 (AQP4) on astrocytes, which is thought to cause complement-dependent cytotoxicity (CDC) and a secondary inflammatory response leading to oligodendrocyte and neuronal damage. Here, we investigate in vivo the role of antibody-dependent cell-mediated cytotoxicity (ADCC) triggered by AQP4 autoantibodies (AQP4-IgG) in the development of NMO pathology. A high-affinity, human recombinant monoclonal AQP4-IgG was mutated in its Fc region to produce 'NMO superantibodies' with enhanced CDC and/or ADCC effector functions, without altered AQP4 binding. Pathological effects of these antibodies were studied in a mouse model of NMO produced by intracerebral injection of AQP4-IgG and human complement. The original (non-mutated) antibody produced large NMO lesions in this model, with loss of AQP4 and GFAP immunoreactivity, inflammation and demyelination, as did a mutated antibody with enhanced CDC and ADCC effector functions. As anticipated, a mutated AQP4-IgG lacking CDC, but having tenfold enhanced ADCC, produced little pathology. However, unexpectedly, a mutated antibody with ninefold enhanced CDC, but lacking ADCC, produced much less pathology than the original AQP4-IgG. Also, pathology was greatly reduced following administration of AQP4-IgG and complement to mice lacking the FcγIII receptor involved in effector cell activation during ADCC, and to normal mice injected with an Fcγ receptor blocking antibody. Our results provide evidence for the central involvement of ADCC in NMO pathology and suggest ADCC as a new therapeutic target in NMO.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos/imunologia , Autoanticorpos/imunologia , Doenças Desmielinizantes/imunologia , Inflamação/imunologia , Neuromielite Óptica/imunologia , Animais , Aquaporina 4/imunologia , Autoantígenos/imunologia , Proteínas do Sistema Complemento/imunologia , Modelos Animais de Doenças , Imunofluorescência , Humanos , Imunoglobulina G/imunologia , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Transfecção
15.
Biomedicines ; 11(4)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37189629

RESUMO

Mitochondria-associated membranes (MAMs) regulate several cellular processes, including calcium homeostasis and mitochondrial function, and dynamics. While MAMs are upregulated in Alzheimer's disease (AD), the mechanisms underlying this increase remain unknown. A possible mechanism may include dysregulation of protein phosphatase 2A (PP2A), which is reduced in the AD brain. Furthermore, PP2A has been previously reported to modulate MAM formation in hepatocytes. However, it is unknown whether PP2A and MAMs are linked in neuronal cells. Here, to test the correlation between PP2A and MAMs, we inhibited the activity of PP2A to mimic its low levels in AD brains and observed MAM formation, function, and dynamics. MAMs were significantly increased after PP2A inhibition, which correlated with elevated mitochondrial Ca2+ influx and disrupted mitochondrial membrane potential and mitochondrial fission. This study highlights the essential role PP2A plays in regulating MAM formation and mitochondrial function and dynamics for the first time in neuronal-like cells.

16.
Stem Cell Res ; 73: 103229, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37890332

RESUMO

Gaucher disease (GD) is a common lysosomal storage disease resulting from mutations in the glucocerebrosidase (GBA1) gene. This genetic disorder manifests with symptoms affecting multiple organs, yet the underlying mechanisms leading to pathology remain elusive. In this study, we successfully generated the MUi030-A human induced pluripotent stem cell (hiPSC) line using a non-integration method from a male type-3 GD patient with a homozygous c.1448T>C (L444P) mutation. These hiPSCs displayed a normal karyotype and pluripotency markers and the remarkable ability to differentiate into cells representing all three germ layers. This resourceful model holds significant promise for illuminating GD's underlying pathogenesis.


Assuntos
Doença de Gaucher , Células-Tronco Pluripotentes Induzidas , Humanos , Masculino , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Doença de Gaucher/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Células Cultivadas
17.
J Exp Pharmacol ; 15: 13-26, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36699694

RESUMO

Background: The outbreak of COVID-19 has led to the suffering of people around the world, with an inaccessibility of specific and effective medication. Fingerroot extract, which showed in vitro anti-SARS-CoV-2 activity, could alleviate the deficiency of antivirals and reduce the burden of health systems. Aim of Study: In this study, we conducted an experiment in SARS-CoV-2-infected hamsters to determine the efficacy of fingerroot extract in vivo. Materials and Methods: The infected hamsters were orally administered with vehicle control, fingerroot extract 300 or 1000 mg/kg, or favipiravir 1000 mg/kg at 48 h post-infection for 7 consecutive days. The hamsters (n = 12 each group) were sacrificed at day 2, 4 and 8 post-infection to collect the plasma and lung tissues for analyses of viral output, lung histology and lung concentration of panduratin A. Results: All animals in treatment groups reported no death, while one hamster in the control group died on day 3 post-infection. All treatments significantly reduced lung pathophysiology and inflammatory mediators, PGE2 and IL-6, compared to the control group. High levels of panduratin A were found in both the plasma and lung of infected animals. Conclusion: Fingerroot extract was shown to be a potential of reducing lung inflammation and cytokines in hamsters. Further studies of the full pharmacokinetics and toxicity are required before entering into clinical development.

19.
Am J Physiol Renal Physiol ; 302(5): F552-60, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22169006

RESUMO

Liver X receptors (LXRs) play an important role in the regulation of cholesterol by regulating several transporters. In this study, we investigated the role of LXRs in the regulation of human organic anion transporter 1 (hOAT1), a major transporter localized in the basolateral membrane of the renal proximal tubule. Exposure of renal S2 cells expressing hOAT1 to LXR agonists (TO901317 and GW3965) and their endogenous ligand [22(R)-hydroxycholesterol] led to the inhibition of hOAT1-mediated [(14)C]PAH uptake. This inhibition was abolished by coincubation of the above agonists with 22(S)-hydroxycholesterol, an LXR antagonist. Moreover, it was found that the effect of LXR agonists was not mediated by changes in intracellular cholesterol levels. Interestingly, the inhibitory effect of LXRs was enhanced in the presence of 9-cis retinoic acid, a retinoic X receptor agonist. Kinetic analysis revealed that LXR activation decreased the maximum rate of PAH transport (J(max)) but had no effect on the affinity of the transporter (K(t)). This result correlated well with data from Western blot analysis, which showed the decrease in hOAT1 expression following LXR activation. Similarly, TO901317 inhibited [(14)C]PAH uptake by the renal cortical slices as well as decreasing mOAT1 protein expression in mouse kidney. Our findings indicated for the first time that hOAT1 was downregulated by LXR activation in the renal proximal tubule.


Assuntos
Regulação para Baixo/fisiologia , Túbulos Renais Proximais/metabolismo , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Receptores Nucleares Órfãos/metabolismo , Animais , Benzoatos/farmacologia , Benzilaminas/farmacologia , Linhagem Celular , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Humanos , Hidrocarbonetos Fluorados/farmacologia , Hidroxicolesteróis/farmacologia , Túbulos Renais Proximais/efeitos dos fármacos , Receptores X do Fígado , Camundongos , Sulfonamidas/farmacologia
20.
Stem Cell Res ; 60: 102698, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35151019

RESUMO

Gaucher disease (GD) is one of the most prevalent lysosomal storage diseases caused by mutation of glucocerebrosidase (GBA1) gene. GD patients develop symptoms in various organs of the body; however, the underlying mechanisms causing pathology are still elusive. Thus, a suitable disease model is important in order to facilitate subsequent investigations. Here, we established MUi031-A human induced pluripotent stem cell (hiPSC) line from CD34+ hematopoietic stem cells of a female type-3 GD patient with homozygous c.1448 T > C (L444P) mutation. The cells exhibited embryonic stem cell-like characteristics and expressed pluripotency markers with capability to differentiate into three germ layers.


Assuntos
Doença de Gaucher , Células-Tronco Pluripotentes Induzidas , Feminino , Doença de Gaucher/metabolismo , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Homozigoto , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa