RESUMO
Rhipicephalus sanguineus sensu lato 'tropical lineage' (Acari: Ixodidae) is considered a sanitary concern due to its role as a disease vector. Tick strains resistant to synthetic acaricides have caused difficulties in their control, besides synthetic acaricides are harmful to the environment and to the health of non-target animals. The research of plants with acaricidal and repellent properties has proved to be an efficient alternative in tick control. The genus Tagetes spp. excels for its use as traditional pest control in households and plantations and also for its potential as an acaricide against R. sanguineus under laboratory conditions. The first aim of the present study was to evaluate the effect of different doses of Tagetes minuta essential oil (TMEO) on the central nervous system (synganglion) in unfed R. sanguineus adults. The histological analysis of synganglion exposed to the different concentrations of TMEO and amitraz 12.5% (50% of the recommended dose in the package insert) showed a significant effect with signs of cell damage including volume increase, loss of shape, and vacuolization, in addition to chromatin alterations such as condensation, margination, and fragmentation. TMEO were analyzed by gas chromatography coupled with mass spectrometry showing the presence of 21 compounds that according to their chemical structure are classified as terpenoids. Among them (Z)-ß-ocimene, ocimene, (Z)-tagetone, and verbenone were found in major quantities.
Assuntos
Acaricidas , Óleos Voláteis , Rhipicephalus sanguineus , Tagetes , Animais , Rhipicephalus sanguineus/fisiologia , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Acaricidas/farmacologia , Tagetes/química , Sistema Nervoso CentralRESUMO
The sesquiterpenes selina-1,3,7(11)-trien-8-one and oxidoselina-1,3,7(11)-trien-8-one were isolated from the essential oil of Eugenia uniflora L. leaves. The structures were elucidated using spectrometric methods (UV, GC-MS, NMR, and specific optical rotation). The relationship between antioxidant activity, as determined by DPPH assay, and the cytotoxic effect was evaluated using tumor cells, namely lung adenocarcinoma epithelial cells (A549) and human hepatoma carcinoma cells (HepG2), as well as a model of normal human lung fibroblast cells (IMR90). Both compounds did not show prominent free-radical scavenging activity according to DPPH assay, and did not inhibit lipid peroxidation in Wistar rat brain homogenate. The isolated compounds showed pro-oxidative effects and cytotoxicity in relation to the IMR90 cell line.
Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Eugenia/química , Naftalenos/farmacologia , Óleos Voláteis/química , Folhas de Planta/química , Sesquiterpenos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , HumanosRESUMO
Research has been conducted on the biotransformation of (8S,9R)-isocaryolan-9-ol (4a) and (1S,2S,5R,8S)-8-methylene-1,4,4-trimethyltricyclo[6.2.1.0(2,5)]undecan-12-ol (5a) by the fungal phytopathogen Botrytis cinerea. The biotransformation of compound 4a yielded compounds 6-9, while the biotransformation of compound 5a yielded compounds 10-13. The activity of compounds 4a and 5a against B. cinerea has been evaluated. (8R,9R)-Isocaryolane-8,9-diol (6), a major metabolite of compound 4a, shows activity compared to its parent compound 4a, which is inactive. The effect of isocaryolanes 3, 4a, and 5a, together with their biotransformation products 6-8, 10, and 14-17, on the germination and radicle and shoot growth of Lactuca sativa (lettuce) has also been determined. Compounds 7-13 are described for the first time.
Assuntos
Botrytis/metabolismo , Fungicidas Industriais/química , Fungicidas Industriais/farmacologia , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Aldeídos/química , Aldeídos/metabolismo , Biotransformação , Compostos Bicíclicos com Pontes/química , Compostos Bicíclicos com Pontes/metabolismo , Lactuca/crescimento & desenvolvimento , Lactuca/fisiologia , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-AtividadeRESUMO
The metabolism of the fungistatic agent (8R,9R)-8-methoxyisocaryolan-9-ol (4) by the fungus Botrytis cinerea has been investigated. Biotransformation of compound 4 yielded compounds 5 and 6-9. No dihydrobotrydial is observed after 4 days of incubation of compound 4. Separate biotransformation of (8R,9R)-isocaryolane-8,9-diol (5) yielded compounds 7-11. The evaluation of the fungistatic activity against B. cinerea of compounds 4, 5, and 6 is reported. (4R,8R,9R)-8-Methoxyisocaryolane-9,15-diol (6), a major metabolite of (8R,9R)-8-methoxyisocaryolan-9-ol (4), shows a much reduced biological activity when compared with the parent compound. Isocaryolane derivatives 6-11 are described for the first time.
Assuntos
Botrytis/metabolismo , Fungicidas Industriais/metabolismo , Sesquiterpenos/farmacologia , Biotransformação , Botrytis/efeitos dos fármacos , Estrutura Molecular , Sesquiterpenos/química , Espectroscopia de Infravermelho com Transformada de Fourier , EstereoisomerismoRESUMO
Dermanyssus gallinae(De Geer) (Acari: Dermanyssidae) is the main ectoparasite associated with laying poultry. This mite is commonly controlled by the application of synthetic chemical insecticides, wich lead to the selection of resistant populations and formation of residues in eggs. Thus, new molecules must be developed to control D. gallinae. This work evaluated the toxicity of essential oils (EOs) from Cinnamomum cassia, Cinnamomum camphora, Cinnamomum camphora var. linalooliferum, Citrus aurantium, Citrus aurantium var. bergamia, Citrus aurantifolia and Citrus reticulata var. tangerine against D. gallinae. Additionally, the chemical profiles of the most bioactive EOs were analyzed by gas chromatography coupled with mass spectrometry (GC-MS) and the major compounds were subjected to new tests using D. gallinae. The most toxic EOs against D. gallinae were evaluated for the nontarget entomopathogenic fungus Beauveria bassiana (Unioeste 88). The EOs from C. cassia (LC50 = 25.43 ± 1.0423 µg/cm3) and C. camphora var. linalooliferum (LC50 = 39.84 ± 1.9635 µg/cm3) were the most active in the fumigant bioassay and caused mortality rates of 96 and 61%, respectively. The GC-MS analysis revealed that the major constituents of EOs from C. cassia and C. camphora var. linalooliferum were trans-cinnamaldehyde and linalool, respectively. The pure compounds, trans-cinnamaldehyde (LC50 = 68.89 ± 3.1391 µg/cm3) and linalool (LC50 = 51.45 ± 1.1967 µg/cm3), were tested on D. gallinae and showed lower toxicity than the EOs. Thus, the compounds were not the only active substances produced by C. cassia and C. camphora var. linalooliferum; moreover synergism may have occurred between the substances. The EOs from C. cassia and C. camphora var. linalooliferum were also toxic to B. bassiana (Unioeste 88). Thus, EOs from C. cassia and C. camphora var. linalooliferum are promising candidates for use in D. gallinae control, but cannot be used in conjunction with the fungus B. bassiana.
Assuntos
Ácaros e Carrapatos/efeitos dos fármacos , Cinnamomum/química , Citrus/química , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Animais , Fumigação , Inseticidas/química , Inseticidas/farmacologia , Óleos Voláteis/química , Óleos de Plantas/químicaRESUMO
The poultry red mite Dermanyssus gallinae (De Geer) is the most important haematophagous ectoparasite in the poultry industry. The use of synthetic acaricides for this control is presenting risks related to human food. In this sense, plant secondary metabolites are promising for controlling this pest. Thus, this study aimed to evaluate the acaricidal activity of Duguetia lanceolata A.St.-Hil. (stem bark), Xylopia emarginata Mart. (stem bark), and Xylopia sericea A.St.-Hil. (stem bark and fruits) against D. gallinae. Additionally, the secondary metabolite profile of the X. emarginata was analysed by UFLC-DAD-ESI(+)-MS/MS (micrOTOF-QII) and data analysis was performed using the Molecular Networking. In a topical application test, all plant species tested showed bioactivity, in that order of toxicity with the respective probability survival: X. emarginata (stem bark) (0.28) > X. sericea (stem barks) (0.35) > X. sericea (fruits) and D. lanceolata (stem bark) (0.47). The most promising results were found for X. emarginata (LC50 = 331.769 µg/cm2). It is noteworthy that the LC50 of the insecticide cypermethrin was 1234.4 µg/cm2, which was 73% higher than that of X. emarginata. The metabolomic profile of X. emarginata revealed the presence of alkaloids, amides, terpenoids, and phenolic compounds. This is the first report of X. emarginata acaricidal activity against D. gallinae and exploratory chemical analysis by untargeted metabolomics and the molecular network of this plant.
Assuntos
Acaricidas , Annonaceae , Ácaros , Animais , Annonaceae/química , Cromatografia Líquida de Alta Pressão , Frutas/química , Metabolômica , Casca de Planta/química , Espectrometria de Massas em TandemRESUMO
The antihyperglicemic activity of crude extract from Moringa oleifera leaves and isolation of phenolic compounds with antioxidant activity using bioguided assay were employed by the first time in leaves cultivated in Brazil. The hydroalcoholic extract (HE) was produced by using ethanol:water (80:20 v/v) and purified by solid-liquid procedure using solvents in ascending order of polarity. The ethyl acetate fraction (Fr-EtOAc) presented high antioxidant potential and it was purified using chromatographic techniques rendering isolated compounds that were identified from the spectral data. The HE extract (500 mg kg-1) was adimistrated in diabetic rats induced by streptozotocin and chemical markers and lipid peroxidation in liver and kidney were evaluated. The Fr-EtOAc showed high antioxidant potential by FRAP reduction method (1678 µmol Fe2+ g-1), DPPH and ABTS scavenging methods (526.7 and 671.5 µmol TEAC g-1 respectively) and ORAC assay (3560.6 µmol TEAC g-1). Therefore, the Fr-EtOAc was purified and yielded three bioactive subfractions (S-12, S-13 abd S-15) that were rechromatoghaphed in HPLC-SemiPrep. After that, two main bioactive glycosylated flavonoids (isoquercitrin and astragalin) and phenolic acid (3-O-caffeoylquinic acid) were obtained. Additionally, the HE extract provided protection against oxidative damage in liver and kidney of diabetic rats ameliorating endogenous antioxidant defenses by increase catalase (CAT), glutathione S-transferase (GST) and non-protein thiol groups (NPSH) levels as well as decreased the lipid peroxidation in these tissues. Our results indicate that three phenolic compounds with high antioxidant activity were isolated and, the chemical composition of HE crude extract, rich in flavonoids glycosylated could be intimately related to antihyperglycemic action. So, it is possible to suggest that these compounds may be used as chemical biomarkers for this plant in Brazil, ensuring quality and supporting the use of aerial parts in tradicional medicine.
Assuntos
Diabetes Mellitus Experimental , Moringa oleifera , Animais , Antioxidantes/farmacologia , Brasil , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Folhas de Planta , RatosRESUMO
Clovane and isocaryolane derivatives have been proven to show several levels of activity against the phytopathogenic fungus Botrytis cinerea. Both classes of sesquiterpenes are reminiscent of biosynthetic intermediates of botrydial, a virulence factor of B. cinerea. Further development of both classes of antifungal agent requires exploration of the structure-activity relationships for the antifungal effects on B. cinerea and phytotoxic effects on a model crop. In this paper, we report on the preparation of a series of alkoxy-clovane and -isocaryolane derivatives, some of them described here for the first time (2b, 2d, 2f-2h, and 4c-4e); the evaluation of their antifungal properties against B. cinerea, and their phytotoxic activites on the germination of seeds and the growth of radicles and shoots of Lactuca sativa (lettuce). Both classes of compound show a correlation of antifungal activity with the nature of side chains, with the best activity against B. cinerea for 2d, 2h, 4c and 4d. In general terms, while 2-alkoxyclovan-9-ols (2a-2e) exert a general phytotoxic effect, this is not the case for 2-arylalkoxyclovan-9-ols (2f-2i) and 8-alkoxyisocaryolan-9-ols (4a-4d), where stimulating effects would make them suitable candidates for application to plants.
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Baccharis dracunculifolia (Asteraceae) is a commonly used plant in traditional medicine known as "alecrim-do-campo". Popularly it has been used as an immunostimulant, antibiotic, anti-inflammatory among other applications. So far, only a few studies have investigated the B. dracunculifolia anti-inflammatory effect and none has investigated the effectiveness of essential oil on skin diseases. AIM OF THE STUDY: The study aimed at evaluating the topical anti-inflammatory activity of B. dracunculifolia essential oil (BdEO) in mice models of acute and chronic skin inflammation. MATERIALS AND METHODS: BdEO was obtained from leaves and it was analyzed with Gas Chromatograph. Topical anti-inflammatory activity of BdEO (0.1, 0.3 and 1.0 mg/ear) was evaluated in Arachidonic Acid or TPA-induced acute and chronic skin inflammation in mice. Parameters such edema, cell migration and keratinocytes proliferation were evaluated. In addition, safety and a possible mechanism of action for BdEO essential oil were also investigated. RESULTS: Our results indicate that mainly terpenoids compounds compose BdEO. In addition, topical treatment with BdEO inhibited inflammatory parameters in both acute and chronic models of skin inflammation. This protective effect was associated with reduced edema formation, smaller cellular influx into the inflamed tissue and reduction of keratinocytes hyperproliferation. Although BdEO appears to exert its anti-inflammatory effect through a corticosteroid pathway, no local or systemic side effects were observed. CONCLUSION: Taken together, the present results showed that the essential oil obtained by hydrodistillation from B. dracunculifolia leaf samples exhibit remarkable topical anti-inflammatory properties. Therefore, our study demonstrated evidence for BdEO topical anti-inflammatory efficacy and safety, suggesting that it could be considered for developing of a new phytotherapeutic formulation as treatment for skin diseases.
Assuntos
Anti-Inflamatórios/farmacologia , Baccharis/química , Toxidermias/tratamento farmacológico , Óleos Voláteis/farmacologia , Animais , Anti-Inflamatórios/química , Toxidermias/patologia , Edema/induzido quimicamente , Edema/tratamento farmacológico , Epiderme/patologia , Feminino , Sistema Linfático/efeitos dos fármacos , Camundongos , Óleos Voláteis/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Receptores de Glucocorticoides/metabolismoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Popularly used in India and sub-Hymalaian region, Moringa oleifera (Moringaceae) is associated with healing properties demonstrated in its use as treatment of acute and chronic skin diseases. Our study aimed at investigating the effects of M. oleifera seed oil (MOSO) in animal models for inflammatory and hyperproliferative skin conditions. MATERIALS AND METHODS: MOSO was analyzed using gas chromatography/mass spectrometry. The anti-inflammatory and anti-hyperproliferative effects of treatment with either MOSO or oleic acid (OA), its main constituent, was evaluated. Acute and chronic inflammation was induced by applying 12-O-Tetradecanoylphorbol-13-acetate (TPA) and acute inflammation with either Arachidonic Acid (AA) or Phenol onto the ear of Swiss mice. Systemic activity and the influence of glucocorticoid receptors (GC) was also evaluated. RESULTS: Topical application of MOSO and OA inhibited ear edema caused by TPA, and Phenol. Only MOSO inhibited ear edema induced by AA. Neutrophil migration was also inhibited by treatment with MOSO. Topical application of MOSO, but not OA, significantly reduced chronic skin inflammation and epidermal hypertrophy induced by multiple TPA applications. Pre-treatment with GC antagonist mifepristone reversed the anti-inflammatory effect of MOSO and OA on the TPA model. Repeated administration of MOSO show a similar effect to dexamethasone on thymus weight, though MOSO did not present any influence on skin thickness, as well as in the weight of the spleen, adrenal gland and lymph node. CONCLUSION: The results suggest that MOSO is effective as a treatment for skin diseases that rely on keratinocyte hyperproliferation. OA is also effective in acute inflammation. Both MOSO and OA depend on GC activation for anti-inflammatory effect but do not exhibit the same adverse effects seen in topical treatment with dexamethasone. We hereby evidence the use of MOSO as a topical anti-inflammatory agent in inflammatory skin diseases, thus, expanding its therapeutic potential.
Assuntos
Anti-Inflamatórios/uso terapêutico , Dermatite de Contato/tratamento farmacológico , Moringa oleifera , Ácido Oleico/uso terapêutico , Óleos de Plantas/uso terapêutico , Glândulas Suprarrenais/efeitos dos fármacos , Animais , Atrofia/tratamento farmacológico , Atrofia/metabolismo , Proliferação de Células/efeitos dos fármacos , Dermatite de Contato/metabolismo , Edema/tratamento farmacológico , Edema/metabolismo , Feminino , Irritantes , Queratinócitos/efeitos dos fármacos , Linfonodos/efeitos dos fármacos , Camundongos , Receptores de Glucocorticoides/metabolismo , Sementes , Pele/efeitos dos fármacos , Pele/patologia , Baço/efeitos dos fármacos , Acetato de Tetradecanoilforbol , Timo/efeitos dos fármacosRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Baccharis punctulata (Asteraceae), popularly known as "Chíllka saru saru" in Bolivia, has been used by rural communities in Bustillo Province of the Potosi Department for treatment of asthma, luxations and contusions. AIM OF THE STUDY: To analyze the chemical composition of the essential oils obtained from leaves of female (BPF) and male (BPM) specimens and evaluate their anti-inflammatory and antioxidant properties. MATERIAL AND METHODS: Chemical composition analyses of Baccharis punctulata essential oils isolated by hidrodistillation from leaves of male and female specimens were performed by GC-FID-MS. The in vivo anti-inflammatory activity was evaluated using the model of TPA (12-O-tetradecanoylphorbol-13-acetate) induced ear edema, and the polymorphonuclear cell migration was evaluated by mieloperoxidase (MPO) and analyzed histologically. To measure the reactive oxygen species (ROS) in the inflamed tissue, the DCFH-DA fluorescent probe was used. The chemical in vitro antioxidant activity of essential oils was determined using the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) free radical assay. RESULTS: The chemical analysis showed high proportion of sesquiterpenes in the volatiles samples obtained from BPM, such as δ-elemene (14.29%), germacrene D (11.29%) and bicyclogermacrene (10.90%), and in the sample from BPF, bicyclogermacrene (42.44%), germacrene D (21.18%) and ß-caryophyllene (14.06%). A statistical difference (pâ¯<â¯0.05) on chemical composition between both essential oils was observed. Topical administration of both BPM and BPF essential oils was able to inhibit the formation of TPA-induced edema in the treated groups. Isolated administration of TPA promoted an increase in MPO enzyme activity, and inhibition of the increase of MPO activity was observed when animals were treated with BFP at concentrations of 0.1â¯mg/ear (13.69⯱â¯0.20%), 0.3â¯mg/ear (22.35⯱â¯0.11%), and 1.0â¯mg/ear (44.98⯱â¯0.27%). Topical treatment with BPM was able to inhibit MPO activity at 22.40⯱â¯0.29% (0.1â¯mg/ear), 36.49⯱â¯0.07% (0.3â¯mg/ear) and 52.19⯱â¯0.28% (1.0â¯mg/ear). The positive control of dexamethasone (DEXA, 0.1â¯mg/ear) was able to revert the increase in the enzymatic activity of MPO caused by TPA (65.16%). Histological analysis showed that topical application of TPA promoted intense cellular infiltration. This inflammatory parameter was reduced with the topical application of the BPF and BPM oil samples as well as with DEXA. The results observed in the ROS and DPPH tests suggest that both samples were able to reduce the inflammatory cells influx and have in vitro antioxidant properties, respectively. CONCLUSIONS: This study presents, for the first time, the chemical composition of the essential oils obtained from leaves of male and female specimens of Baccharis punctulata, and their anti-inflammatory and antioxidant activities. The results presented by the volatile samples in our biotests support traditional uses of this plant species.
Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Baccharis/química , Óleos Voláteis/farmacologia , Administração Tópica , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/administração & dosagem , Antioxidantes/isolamento & purificação , Dexametasona/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Edema/tratamento farmacológico , Feminino , Masculino , Camundongos , Óleos Voláteis/administração & dosagem , Óleos Voláteis/isolamento & purificação , Folhas de Planta , Espécies Reativas de Oxigênio/metabolismoRESUMO
In this study, we developed and validated a fast, specific, sensitive, precise and stability-indicating high performance liquid chromatography (HPLC) method to determine the drug apocynin in bovine serum albumin (BSA) nanoparticles. Chromatographic analyses were performed on an RP C18 column and using a photodiode array detector at a wavelength of 276 nm. Mobile phase consisted of a mixture of acetonitrile and 1% acetic acid (60:40, v/v), and it was eluted isocratically at a flow rate of 0.8 mL/min. The retention time of apocynin chromatographic peak was 1.65 min. The method was linear, precise, accurate and specific in the range of 5-100 µg/mL. The intra- and inter-day precisions presented relative standard deviation (RSD) values lower than 2%. The method was robust regarding changes in mobile phase proportion, but not for flow rate. Limits of detection and quantitation were 78 ng/mL and 238 ng/mL, respectively. Apocynin was exposed to acid and alkali hydrolysis, oxidation and visible light. The drug suffered mild degradation under acid and oxidation conditions and great degradation under alkali conditions. Light exposure did not degrade the drug. The method was successfully applied to determine the encapsulation efficiency of apocynin in BSA nanoparticles.
RESUMO
A quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the simultaneous analyses of malachite green (MG), crystal violet (CV) and its major metabolites, leucomalachite green (LMG) and leucocrystal violet (LCV) residues in fish and shrimp samples has been validated. Fish and shrimp samples were extracted with citrate buffer/acetonitrile, and the extracts were purified on strong cation-exchange (SCX) solid-phase extraction (SPE) cartridge. After conversion of LMG into MG using a post column oxidation reactor containing lead (IV) oxide (PbO(2)), the effluents were analysed. Residues were analysed using positive-ion electrospray ionisation (ESI). Identification and quantification of analytes were based on the ion transitions monitored by multiple reaction monitoring (MRM). Validation of the method was carried out in accordance with the Decision 2002/657/EC, which establishes criteria and procedures for the validation of methods. The following parameters were determined: decision limit (CCα), detection capability (CCß), linearity, accuracy, precision, selectivity, specificity and matrix effect. The decision limits (CCα) for MG, LMG, CV and LCV were 0.164, 0.161, 0.248 and 0.860 µg kg(-1). The respective detection capabilities (CCß) were 0.222, 0.218, 0.355 and 1.162 µg kg(-1). Typical recoveries (intermediate precision) in shrimp, for MG, CV, LMG and LCV for 2.0 µg kg(-1) level fortified samples using the optimised procedure were in the range 69%, 97%, 80.3% and 71.8%, respectively. The findings demonstrate the suitability of the method to detect simultaneously MG, CV and its metabolite (LMG and LCV) in fish and shrimp.