Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Funct Integr Genomics ; 23(2): 184, 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37243750

RESUMO

Circular RNAs (circRNAs) are regulatory elements that are involved in orchestrating gene expression and protein functions and are implicated in various biological processes including cancer. Notably, breast cancer has a significant mortality rate and is one of the most common malignancies in women. CircRNAs have been demonstrated to contribute to the pathogenesis of breast cancer including its initiation, progression, metastasis, and resistance to drugs. By acting as miRNA sponges, circRNAs can indirectly influence gene expression by disrupting miRNA regulation of their target genes, ultimately altering the course of cancer development and progression. Additionally, circRNAs can interact with proteins and modulate their functions including signaling pathways involved in the initiation and development of cancer. Recently, circRNAs can encode peptides that play a role in the pathophysiology of breast cancer and other diseases and their potential as diagnostic biomarkers and therapeutic targets for various cancers including breast cancer. CircRNAs possess biomarkers that differentiate, such as stability, specificity, and sensitivity, and can be detected in several biological specimens such as blood, saliva, and urine. Moreover, circRNAs play an important role in various cellular processes including cell proliferation, differentiation, and apoptosis, all of which are integral factors in the development and progression of cancer. This review synthesizes the functions of circRNAs in breast cancer, scrutinizing their contributions to the onset and evolution of the disease through their interactions with exosomes and cancer-related intracellular pathways. It also delves into the potential use of circRNA as a biomarker and therapeutic target against breast cancer. It discusses various databases and online tools that offer crucial circRNA information and regulatory networks. Lastly, the challenges and prospects of utilizing circRNAs in clinical settings associated with breast cancer are explored.


Assuntos
Neoplasias da Mama , Exossomos , MicroRNAs , Humanos , Feminino , RNA Circular/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , MicroRNAs/genética , Biomarcadores , Exossomos/genética
2.
Trends Food Sci Technol ; 121: 105-113, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34898853

RESUMO

BACKGROUND: Severe acute respiratory coronavirus syndrome 2 (SARS-CoV-2) is the etiological agent of coronavirus disease 2019 (COVID-19). SARS-CoV-2 was first detected in Wuhan, China and spread to other countries and continents causing a variety of respiratory and non-respiratory symptoms which led to death in severe cases. SCOPE AND APPROACH: In this review, we discuss and analyze the impact of the COVID-19 pandemic on animal production systems and food production of meat, dairy, eggs, and processed food, in addition to assessing the impact of the pandemic on animal healthcare systems, animal healthcare quality, animal welfare, food chain sustainability, and the global economy. We also provide effective recommendations to animal producers, veterinary healthcare professionals, workers in animal products industries, and governments to alleviate the effects of the pandemic on livestock farming and production systems. KEY FINDINGS AND CONCLUSIONS: Port restrictions, border restrictions, curfews, and social distancing limitations led to reduced quality, productivity, and competitiveness of key productive sectors. The restrictions have hit the livestock sector hard by disrupting the animal feed supply chain, reducing animal farming services, limiting animal health services including delays in diagnosis and treatment of diseases, limiting access to markets and consumers, and reducing labor-force participation. The inhumane culling of animals jeopardized animal welfare. Egg smashing, milk dumping, and other animal product disruptions negatively impacted food production, consumption, and access to food originating from animals. In summary, COVID-19 triggered lockdowns and limitations on local and international trade have taken their toll on food production, animal production, and animal health and welfare. COVID-19 reverberations could exacerbate food insecurity, hunger, and global poverty. The effects could be massive on the most vulnerable populations and the poorest nations.

3.
Trends Food Sci Technol ; 111: 141-150, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33746363

RESUMO

BACKGROUND: The agricultural food products industry in Bangladesh depends on utilizing antimicrobials indiscriminately as growth promoters and for controlling infectious diseases. Thus, there is always a risk of antimicrobial agent accumulation in food sources that originate from agricultural production. METHODS: In the present study, we collected data from published articles between January, 2013 and December, 2019 on antimicrobial residues in human food sources such as meat, milk, eggs, and fishes. RESULTS: Liver contained the highest percentage of antimicrobial residues (74%; 95% CI: 59.66-85.37) against the in vitro enteric pathogen Escherichia coli in layer chickens. Similar results were demonstrated in liver (68%; 95% CI: 53.30-80.48) and kidney (66%, 95% CI: 51.23-78.79) of layer chickens against Bacillus cereus and Bacillus subtilis. Amongst all antibiotics, the highest concentrations of ciprofloxacin were detected in kidney (48.57%; 95% CI: 31.38-66.01), followed by liver (47.56; 95% CI: 40.88-54.30) of broiler chickens. Ciprofloxacin was also present in liver (46.15%; 95% CI: 33.70-58.96) of layer chickens. The percentage of ciprofloxacin in thigh and breast meat in broiler bird were 41.54% (95% CI: 34.54-48.79) and 37.95% (95% CI: 31.11-45.15) respectively. Enrofloxacin was the second most dominant antimicrobial agent and was present in the liver of both types of poultry (Broiler and Layer chickens: 41.54%; 95% CI: 29.44-54.4 and 437.33%; 95% CI: 30.99-44.01). The prevalence rates of enrofloxacin in thigh and breast meat of broiler chickens were 24.10% (95% CI: 18.28-30.73) and 20.51% (95% CI: 15.08-26.87), respectively. Tetracycline, a commonly used antibiotic in livestock, was present in the liver (49.23%; 95% CI: 36.60-61.93) of layer chickens. In case of aquaculture food products, the highest amount of amoxicillin (683.2 mg/kg) was detected in Tilapia fish (Oreochromis niloticus), followed by 584.4 mg/kg in climbing perch (Anabas testudineus) and 555.6 mg/kg in Rui fish (Labeo rohita). Among the five types of fishes, Rui fish (0.000515 mg/kg) contained the highest concentrations of chloramphenicol antibiotic residues. CONCLUSIONS: The presence of antimicrobial residues in meat, milk, egg, and fish is a serious public health threat due to the potential induction of antimicrobial resistance. It can negatively impact the food supply chain, especially with the current strain that it is already facing with the current COVID-19 pandemic. The findings of the present study highlight the ongoing risk of residual antimicrobial agents in food of animal origin in Bangladesh and countries with similar practices. This can draw the attention of public health officials to propose plans to mitigate or stop this practice.

4.
J Cell Mol Med ; 24(5): 2791-2801, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32030883

RESUMO

Pathogenic bacteria can enter into a viable but non-culturable (VBNC) state under unfavourable conditions. Proteus mirabilis is responsible for dire clinical consequences including septicaemia, urinary tract infections and pneumonia, but is not a species previously known to enter VBNC state. We suggested that stress-induced P. mirabilis can enter a VBNC state in which it retains virulence. P. mirabilis isolates were incubated in extreme osmotic pressure, starvation, low temperature and low pH to induce a VBNC state. Resuscitation was induced by temperature upshift and inoculation in tryptone soy broth with Tween 20 and brain heart infusion broth. Cellular ultrastructure and gene expression were examined using transmission electron microscopy (TEM) and quantitative real-time polymerase chain reaction (qPCR), respectively. High osmotic pressure and low acidity caused rapid entry into VBNC state. Temperature upshift caused the highest percentage of resuscitation (93%) under different induction conditions. In the VBNC state, cells showed aberrant and dwarf morphology, virulence genes and stress response genes (envZ and rpoS) were expressed (levels varied depending on strain and inducing factors). This is the first-time characterization of VBNC P. mirabilis. The ability of P. mirabilis pathogenic strains to enter a stress-induced VBNC state can be a serious public health threat.


Assuntos
Proteus mirabilis/fisiologia , Regulação Bacteriana da Expressão Gênica , Viabilidade Microbiana , Proteus mirabilis/genética , Proteus mirabilis/ultraestrutura , RNA Ribossômico 16S/genética , Transcrição Gênica
6.
Int J Mol Sci ; 21(21)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167379

RESUMO

The goal of the study was to develop a specific, sensitive, and cost-effective molecular RT-PCR diagnostic assay for the rapid and simultaneous detection of the serotypes of dengue virus (DENV) and Chikungunya virus (CHIKV) from sera of suspected febrile patients. A single-tube, single-step multiplex RT-PCR (mRT-PCR) assay was designed for the detection of viral genomes from clinical and field samples. Specificity and sensitivity of the mRT-PCR assay were evaluated against six different combinations using two reverse transcriptases (AMV-RT and RT-Ace) and three DNA polymerases (LA-Taq, rTaq, and Tth). Among the six combinations, the AMV-RT and LA-Taq combination was more specific and sensitive than other enzyme combinations for detecting viral genomes of DENV-1, DENV-2, DENV-3, and DENV-4 (p < 0.01), and for detecting viral genomes of CHIKV (p < 0.05). The detection limits of the mRT-PCR were 10 focus forming units (FFU) for CHIKV and 1 FFU, 20 FFU, 0.1 FFU, and 10 FFU for DENV-1, DENV-2, DENV-3, and DENV-4, respectively. The primers used for the mRT-PCR did not show any cross-reactivity among the serotypes of DENV or CHIKV. Specificity and sensitivity of the newly developed mRT-PCR were validated using serum samples collected from febrile patients during dengue outbreaks in Bangladesh. The sensitivity for serotype detection of DENV and CHIKV was superior to the virus isolation method and the antigen detection method using the Dengue NS1-Ag assay. This novel mRT-PCR method can be used for molecular epidemiological surveillance of DENV and CHIKV in epidemic and endemic countries.


Assuntos
Febre de Chikungunya/diagnóstico , Vírus Chikungunya/genética , Vírus da Dengue/genética , Dengue/diagnóstico , Reação em Cadeia da Polimerase Multiplex/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Aedes/virologia , Animais , Bangladesh , Células Cultivadas , Febre de Chikungunya/sangue , Febre de Chikungunya/virologia , Vírus Chikungunya/isolamento & purificação , Cricetinae , Dengue/sangue , Dengue/virologia , Vírus da Dengue/isolamento & purificação , Humanos , Técnicas de Diagnóstico Molecular/métodos , RNA Viral/genética , RNA Viral/isolamento & purificação , Sensibilidade e Especificidade , Sorogrupo , Virologia/métodos
7.
J Cell Mol Med ; 22(3): 1972-1983, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29316223

RESUMO

Streptococcus mutans contributes significantly to dental caries, which arises from homoeostasic imbalance between host and microbiota. We hypothesized that Lactobacillus sp. inhibits growth, biofilm formation and gene expression of Streptococcus mutans. Antibacterial (agar diffusion method) and antibiofilm (crystal violet assay) characteristics of probiotic Lactobacillus sp. against Streptococcus mutans (ATCC 25175) were evaluated. We investigated whether Lactobacillus casei (ATCC 393), Lactobacillus reuteri (ATCC 23272), Lactobacillus plantarum (ATCC 14917) or Lactobacillus salivarius (ATCC 11741) inhibit expression of Streptococcus mutans genes involved in biofilm formation, quorum sensing or stress survival using quantitative real-time polymerase chain reaction (qPCR). Growth changes (OD600) in the presence of pH-neutralized, catalase-treated or trypsin-treated Lactobacillus sp. supernatants were assessed to identify roles of organic acids, peroxides and bacteriocin. Susceptibility testing indicated antibacterial (pH-dependent) and antibiofilm activities of Lactobacillus sp. against Streptococcus mutans. Scanning electron microscopy revealed reduction in microcolony formation and exopolysaccharide structural changes. Of the oral normal flora, L. salivarius exhibited the highest antibiofilm and peroxide-dependent antimicrobial activities. All biofilm-forming cells treated with Lactobacillus sp. supernatants showed reduced expression of genes involved in exopolysaccharide production, acid tolerance and quorum sensing. Thus, Lactobacillus sp. can inhibit tooth decay by limiting growth and virulence properties of Streptococcus mutans.


Assuntos
Antibiose , Biofilmes/efeitos dos fármacos , Ligilactobacillus salivarius/crescimento & desenvolvimento , Probióticos/farmacologia , Streptococcus mutans/efeitos dos fármacos , Bacteriocinas/farmacologia , Biofilmes/crescimento & desenvolvimento , Catalase/farmacologia , Meios de Cultura/química , Humanos , Concentração de Íons de Hidrogênio , Interferon gama/biossíntese , Interleucina-10/biossíntese , Lacticaseibacillus casei/efeitos dos fármacos , Lacticaseibacillus casei/crescimento & desenvolvimento , Lacticaseibacillus casei/metabolismo , Lactobacillus plantarum/efeitos dos fármacos , Lactobacillus plantarum/crescimento & desenvolvimento , Lactobacillus plantarum/metabolismo , Limosilactobacillus reuteri/efeitos dos fármacos , Limosilactobacillus reuteri/crescimento & desenvolvimento , Limosilactobacillus reuteri/metabolismo , Ligilactobacillus salivarius/efeitos dos fármacos , Ligilactobacillus salivarius/metabolismo , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/microbiologia , Testes de Sensibilidade Microbiana , Peróxidos/farmacologia , Polissacarídeos Bacterianos/antagonistas & inibidores , Polissacarídeos Bacterianos/biossíntese , Cultura Primária de Células , Percepção de Quorum/efeitos dos fármacos , Streptococcus mutans/genética , Streptococcus mutans/crescimento & desenvolvimento , Streptococcus mutans/patogenicidade , Tripsina/farmacologia
8.
Angiogenesis ; 21(2): 215-228, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29327326

RESUMO

IL-11 has been detected in inflamed joints; however, its role in the pathogenesis of arthritis is not yet clear. Studies were conducted to characterize the expression and functional significance of IL-11 and IL-11Rα in rheumatoid arthritis (RA). IL-11 levels were elevated in RA synovial fluid (SF) compared to osteoarthritis (OA) SF and plasma from RA, OA and normal individuals (NLs). Morphologic studies established that IL-11 was detected in lining fibroblasts and macrophages in addition to sublining endothelial cells and macrophages at higher levels in RA compared to NL synovial tissues. Since IL-11Rα was exclusively expressed in RA fibroblasts and endothelial cells, macrophages were not involved in IL-11 effector function. Ligation of IL-11 to IL-11Rα strongly provoked fibroblast infiltration into RA joint, while cell proliferation was unaffected by this process. Secretion of IL-8 and VEGF from IL-11 activated RA fibroblasts was responsible for the indirect effect of IL-11 on endothelial cell transmigration and tube formation. Moreover, IL-11 blockade impaired RA SF capacity to elicit endothelial cell transmigration and tube formation. We conclude that IL-11 binding to endothelial IL-11Rα can directly induce RA angiogenesis. In addition, secretion of proangiogenic factors from migrating fibroblasts potentiated by IL-11 can indirectly contribute to RA neovascularization.


Assuntos
Artrite Reumatoide/metabolismo , Células Endoteliais/metabolismo , Fibroblastos/metabolismo , Interleucina-11/metabolismo , Articulações/metabolismo , Neovascularização Patológica/metabolismo , Artrite Reumatoide/patologia , Células Endoteliais/patologia , Feminino , Fibroblastos/patologia , Humanos , Subunidade alfa de Receptor de Interleucina-11/metabolismo , Interleucina-8/metabolismo , Articulações/patologia , Masculino , Neovascularização Patológica/patologia , Migração Transendotelial e Transepitelial , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
J Cell Mol Med ; 18(12): 2512-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25211510

RESUMO

Type II collagen (CII) is a cartilage structural protein that plays important roles in joint function, arthritis and ageing. In studying the ability of CII to induce eye-mediated specific immune tolerance, we have recently proven that CII is capable of inducing anterior chamber-associated immune deviation (ACAID) in Balb/c mice. Here, we study the ability of CII to induce eye-mediated immune tolerance in strains of mice that are prone to the induction of rheumatoid arthritis. Thus, we hypothesized that CII induces ACAID in DBA/1 mice and in C57BL/6 mice through the AC route (direct injection) or the intravenous route (adoptive transfer of in vitro-generated CII-specific ACAID macrophages or of CII-specific in vitro-generated T regulatory cells). Specific immune tolerance induction was assessed using both delayed-type hypersensitivity (DTH) and local adoptive transfer (LAT) assays. Results indicated the ability of CII to generate CII-specific ACAID-mediated immune tolerance in vivo and in vitro in both DBA/1 mice and C57BL/6 mice. These findings could be beneficial in studies of immune tolerance induction using CII.


Assuntos
Câmara Anterior/imunologia , Artrite/imunologia , Colágeno Tipo II/imunologia , Tolerância Imunológica/imunologia , Transferência Adotiva/métodos , Animais , Câmara Anterior/efeitos dos fármacos , Artrite/metabolismo , Células Cultivadas , Colágeno Tipo II/administração & dosagem , Colágeno Tipo II/metabolismo , Olho/efeitos dos fármacos , Olho/imunologia , Hipersensibilidade Tardia/imunologia , Hipersensibilidade Tardia/metabolismo , Imunização/métodos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Baço/citologia , Baço/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/transplante
10.
Brain Behav Immun ; 35: 64-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24095895

RESUMO

The injection of antigens into the Anterior Chamber (AC) of the eye induces Anterior Chamber Associated Immune Deviation (ACAID), which is a potent form of immune deviation that is largely attributed to the effect of TGFß2 in the aqueous humor on ocular antigen-presenting cells (APCs). ACAID antigen presentation via APCs and B cells leads to the generation of antigen-specific T regulatory cells. The encephalitogenic antigens Myelin oligodendrocyte glycoprotein (MOG) and Myelin basic protein (MBP) have an obvious clinical relevance. We hypothesized that the intravenous injection of in vitro-generated ACAID APCs or in vitro-generated ACAID B cells specific to the encephalitogenic antigens MOG35-55/MBP induces specific peripheral tolerance in recipient BALB/c mice. We examined the suppression of MOG35-55-specific/MBP-specific inflammatory responses using delayed-type hypersensitivity (DTH) assays and Local Adoptive Transfer (LAT) assays. Results indicated that MOG35-55-specific/MBP-specific tolerance was generated after the intravenous injections of MOG35-55-specific/MBP-specific ACAID APCs, MOG35-55-specific/MBP-specific ACAID B cells, and MOG35-55-specific/MBP-specific ACAID T regulatory cells. The specific immune deviation was in vitro-induced, cell-mediated, and specific to the encephalitogenic antigens MOG35-55/MBP. This in vitro-mediated approach for the generation of MOG35-55/MBP-specific tolerance opens up avenues for the application of ACAID as a tool for the therapy of Multiple Sclerosis, Schizophrenia, and other diseases.


Assuntos
Câmara Anterior/imunologia , Linfócitos B/imunologia , Proteína Básica da Mielina/imunologia , Glicoproteína Mielina-Oligodendrócito/imunologia , Linfócitos T Reguladores/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Linfócitos B/metabolismo , Tolerância Imunológica , Camundongos , Camundongos Endogâmicos BALB C , Fragmentos de Peptídeos/imunologia , Linfócitos T Reguladores/metabolismo
11.
Brain Behav Immun ; 42: 118-22, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24953428

RESUMO

Introduction of antigens into the anterior chamber (AC) of the eye generates a specific systemic form of tolerance that is termed AC-associated immune deviation (ACAID). Experimental autoimmune encephalomyelitis (EAE) is an animal model of the human CNS demyelinating diseases, including multiple sclerosis (MS) and acute disseminated encephalomyelitis. We investigated whether the encephalitogenic antigens myelin oligodendrocyte glycoprotein (MOG35-55) or myelin basic protein (MBP) induce ACAID in the EAE-prone C57BL/6 mice. We hypothesized that injection of MOG35-55/MBP induces antigen-specific tolerance whether via the AC route, the adoptive transfer of in vitro-generated MOG35-55-specific/MBP-specific ACAID antigen presenting cells (APCs), or the adoptive transfer of MOG35-55-specific/MBP-specific ACAID T regulatory cells (Tregs). ACAID is characterized by the specific impairment of delayed-type hypersensitivity (DTH) responses. Thus, DTH assays were used to test for ACAID following the AC injection of MOG35-55/MBP, or the intravenous injection of MOG35-55-specific/MBP-specific ACAID APCs. The functional local adoptive transfer (LAT) assays were used to examine the putative regulatory functions of in vitro generated MOG35-55-specific/MBP-specific Tregs. This report is the first to demonstrate the in vivo and in vitro induction of MOG35-55-specific/MBP-specific ACAID-mediated tolerance in C57BL/6 mice. These findings highlight the need for novel immunotherapeutic strategies for MS and optic neuritis.


Assuntos
Câmara Anterior/imunologia , Tolerância Imunológica/imunologia , Proteína Básica da Mielina/imunologia , Bainha de Mielina/imunologia , Glicoproteína Mielina-Oligodendrócito/imunologia , Transferência Adotiva , Animais , Câmara Anterior/efeitos dos fármacos , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Proteína Básica da Mielina/administração & dosagem , Glicoproteína Mielina-Oligodendrócito/administração & dosagem , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia
12.
Infect Dis (Lond) ; 56(2): 91-109, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37897710

RESUMO

BACKGROUND: The goal of the current study was to elucidate the genomic background of biofilm formation in Klebsiella pneumoniae. METHODS: Clinical isolates were screened for biofilm formation using the crystal violet assay. Antimicrobial resistance (AMR) profiles were assessed by disk diffusion and broth microdilution tests. Biofilm formation was correlated to virulence and resistance genes screened by PCR. Draft genomes of three isolates that form strong biofilm were generated by Illumina sequencing. RESULTS: Only the siderophore-coding gene iutA was significantly associated with more pronounced biofilm formation. ST1399-KL43-O1/O2v1 and ST11-KL15-O4 were assigned to the multidrug-resistant strain K21 and the extensively drug-resistant strain K237, respectively. ST1999-KL38-O12 was assigned to K57. Correlated with CRISPR/Cas distribution, more plasmid replicons and prophage sequences were identified in K21 and K237 compared to K57. The acquired AMR genes (blaOXA-48, rmtF, aac(6')-Ib and qnrB) and (blaNDM-1, blaCTX-M, aph(3')-VI, qnrS, and aac(6')-Ib-cr) were found in K237 and K21, respectively. The latter showed a novel ISEcp1-mediated chromosomal integration of replicon type IncM1 plasmid-like structure harboring blaCTX-M-14 and aph(3')-VI that uniquely interrupted rcsC. The plasmid-mediated heavy metal resistance genes merACDEPRT and arsABCDR were spotted in K21, which also exclusively carried the acquired virulence genes mrkABCDF and the hypervirulence-associated genes iucABCD-iutA, and rmpA/A2. Pangenome analysis revealed NTUH-K2044 accessory genes most frequently shared with K21. CONCLUSIONS: While less virulent to Galleria mellonella than ST1999 (K57), the strong biofilm former, multidrug-resistant, NDM-producer K. pneumoniae K21 (ST1399-KL43-O1/O2v1) carries a novel chromosomally integrated plasmid-like structure and hypervirulence-associated genes and represents a serious threat to countries in the area.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Plasmídeos/genética , Virulência/genética , Biofilmes , Testes de Sensibilidade Microbiana , Genômica , Antibacterianos/farmacologia , beta-Lactamases/genética
13.
Microbiol Resour Announc ; 13(3): e0096723, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38323846

RESUMO

Here, we report the draft genome sequences of two Bacillus licheniformis strains harboring the lichenysin operon that were isolated from healthy goat and horse in South Africa. The genomes were sequenced using Illumina MiSeq and had a length of 4,152,826 and 4,110,075 bp, respectively, with a G + C content of 46%.

14.
Biomedicines ; 12(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39062032

RESUMO

The Mpox virus (MPXV) is known to cause zoonotic disease in humans. The virus belongs to the genus Orthopoxvirus, of the family Poxviridae, and was first reported in monkeys in 1959 in Denmark and in humans in 1970 in the Congo. MPXV first appeared in the U.S. in 2003, re-emerged in 2017, and spread globally within a few years. Wild African rodents are thought to be the reservoir of MPXV. The exotic trade of animals and international travel can contribute to the spread of the Mpox virus. A phylogenetic analysis of MPXV revealed two distinct clades (Central African clade and West African clade). The smallpox vaccine shows cross-protection against MPXV infections in humans. Those who have not previously been exposed to Orthopoxvirus infections are more vulnerable to MPXV infections. Clinical manifestations in humans include fever, muscle pain, headache, and vesicle formation on the skin of infected individuals. Pathognomonic lesions include ballooning degenerations with Guarnieri-like inclusions in vesicular epithelial cells. Alterations in viral genome through genetic mutations might favor the re-emergence of a version of MPXV with enhanced virulence. As of November 2023, 92,783 cases and 171 deaths have been reported in 116 countries, representing a global public health concern. Here, we provide insights on the re-emergence of MPXV in humans. This review covers the origin, emergence, re-emergence, transmission, pathology, diagnosis, control measures, and immunomodulation of the virus, as well as clinical manifestations. Concerted efforts of health professionals and scientists are needed to prevent the disease and stop its transmission in vulnerable populations.

15.
J Genomics ; 12: 19-25, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38321997

RESUMO

The emergence of antimicrobial-resistant and mastitis-associated Staphylococcus aureus is of great concern due to the huge economic losses worldwide. Here, we report draft genome sequences of two Staphylococcus aureus strains which were isolated from raw milk samples obtained from mastitis-infected cows in Bangladesh. The strains were isolated and identified using conventional microbiological and molecular polymerase chain reaction (PCR) methods. Antibiotic susceptibility testing was performed. Genomic DNA of the two strains was extracted and the strains were sequenced using the Illumina NextSeq 550 platform. The assembled contigs were analyzed for virulence determinants, antimicrobial resistance genes, extra-chromosomal plasmids, and multi-locus sequence type (MLST). The genomes of the two strains were compared with other publicly available genome sequences of Staphylococcus aureus strains. The raw read sequences were downloaded and all sequence files were analyzed identically to generate core genome phylogenetic trees. The genome of BR-MHR281strain did not harbour any antibiotic resistance determinants, however BR-MHR220 strain harbored mecA and blaZ genes. Analysis of BR-MHR220 strain revealed that it was assigned to sequence type (ST-6), clonal complex (CC) 5 and spa type t304, while BR-MHR281 strain belonged to ST-2454, CC8, and harbored the spa type t7867. The findings of the present study and the genome sequences of BR-MHR220 and BR-MHR281 strains will provide data on the detection and genomic analysis and characterization of mastitis-associated Staphylococcus aureus in Bangladesh. In addition, the findings of the present study will serve as reference genomes for future molecular epidemiological studies and will provide significant data which help understand the prevalence, pathogenesis and antimicrobial resistance of mastitis-associated Staphylococcus aureus.

16.
Antibiotics (Basel) ; 12(2)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36830328

RESUMO

Multidrug resistant (MDR) Acinetobacter baumannii is a critical opportunistic pathogen in healthcare-associated infections (HAI). This is attributed to several factors, including its ability to develop biofilms that can enhance antimicrobial resistance (AMR) in addition to creating an environment for horizontal transfer of antibiotic resistance genes. The role of the efflux pump in biofilm formation is important for studies on alternative treatments for biofilms. One of the significant efflux pump families is the RND efflux pump family, which is common in Gram negative bacteria. The aim is to study the role of the RND efflux pump in biofilm formation by A. baumannii. The biofilm formation potential of thirty-four MDR A. baumannii isolates was evaluated by crystal violet assays. The effect of efflux pump inhibition and activation was studied using the efflux pump inhibitor carbonyl cyanide 3-chlorophenylhydrazone (CCCP) and the RND efflux pump substrate levofloxacin (at sub-MIC), respectively. The isolates were genotypically grouped by enterobacterial repetitive intergenic consensus (ERIC) typing and the expression of adeABC, adeFGH, and adeIJK efflux pump genes was measured by qPCR. Overall, 88.2% (30/34) of isolates were biofilm producers (the phenotype was variable including strong and weak producers). Efflux pump inhibition by CCCP reduced the biofilm formation significantly (p < 0.05) in 17.6% (6/34) of some isolates, whereas sub-MICs of the substrate levofloxacin increased biofilm formation in 20.5% (7/34) of other isolates. Overexpression of the three RND efflux pump genes was detected in five out of eleven selected isolates for qPCR with remarkable overexpression in the adeJ gene. No correlation was detected between the biofilm phenotype pattern and the RND efflux pump gene expression in biofilm cells relative to planktonic cells. In conclusion, the role of the RND efflux pumps AdeABC, AdeFGH, and AdeIJK in biofilm formation does not appear to be pivotal and the expression differs according to the genetic background of each strain. Thus, these pumps may not be a promising target for biofilm inhibition.

17.
Int J Biol Macromol ; 235: 123783, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36822282

RESUMO

Circular RNAs (circRNAs), a class of non-coding RNAs (ncRNAs), are highly stable and ubiquitous molecules that exhibit tissue-specific expression. Accumulating evidence has shown that aberrant expression of circRNAs can play a role in the pathogenesis of several diseases. Rheumatic diseases are a varied group of autoimmune and inflammatory disorders affecting mainly the musculoskeletal system. Notably, circRNAs, which are essential immune system gene modulators, are strongly linked to the occurrence and progression of autoimmune disorders. Here, we present and discuss the current findings concerning the roles, implications and theragnostic potentials of circRNAs in common rheumatic diseases, including ankylosing spondylitis (AS), osteoarthritis (OA), osteoporosis (OP), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), Crohn's disease (CD), and gout. This review aims to provide new insights to support the development of novel diagnostic and therapeutic strategies for these disabling diseases.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Doenças Reumáticas , Espondilite Anquilosante , Humanos , RNA Circular/genética , Doenças Reumáticas/genética , Artrite Reumatoide/metabolismo , Espondilite Anquilosante/genética , Espondilite Anquilosante/metabolismo
18.
Biomedicines ; 11(11)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38001938

RESUMO

The rise of antimicrobial resistance, particularly from extended-spectrum ß-lactamase producing Enterobacteriaceae (ESBL-E), poses a significant global health challenge as it frequently causes the failure of empirical antibiotic therapy, leading to morbidity and mortality. The E. coli- and K. pneumoniae-derived CTX-M genotype is one of the major types of ESBL. Mobile genetic elements (MGEs) are involved in spreading ESBL genes among the bacterial population. Due to the rapidly evolving nature of ESBL-E, there is a lack of specific standard examination methods. Carbapenem has been considered the drug of first choice against ESBL-E. However, carbapenem-sparing strategies and alternative treatment options are needed due to the emergence of carbapenem resistance. In South Asian countries, the irrational use of antibiotics might have played a significant role in aggravating the problem of ESBL-induced AMR. Superbugs showing resistance to last-resort antibiotics carbapenem and colistin have been reported in South Asian regions, indicating a future bleak picture if no urgent action is taken. To counteract the crisis, we need rapid diagnostic tools along with efficient treatment options. Detailed studies on ESBL and the implementation of the One Health approach including systematic surveillance across the public and animal health sectors are strongly recommended. This review provides an overview of the background, associated risk factors, transmission, and therapy of ESBL with a focus on the current situation and future threat in the developing countries of the South Asian region and beyond.

19.
Biomedicines ; 11(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37626677

RESUMO

Canine parvovirus (CPV-2) is one of the most important pathogens of dogs of all ages, causing pandemic infections that are characterized by fatal hemorrhagic enteritis. The CPV-2 vaccine is recommended as a core vaccine for pet animals. Despite the intensive practice of active immunization, CPV-2 remains a global threat. In this study, a multi-epitope vaccine against CPV-2 was designed, targeting the highly conserved capsid protein (VP2) via in silico approaches. Several immunoinformatics methods, such as epitope screening, molecular docking, and simulation were used to design a potential vaccine construct. The partial protein sequences of the VP2 gene of CPV-2 and protein sequences retrieved from the NCBI were screened to predict highly antigenic proteins through antigenicity, trans-membrane-topology screening, an allergenicity assessment, and a toxicity analysis. Homologous VP2 protein sequences typically linked to the disease were identified using NCBI BLAST, in which four conserved regions were preferred. Overall, 10 epitopes, DPIGGKTGI, KEFDTDLKP, GTDPDDVQ, GGTNFGYIG, GTFYFDCKP, NRALGLPP, SGTPTN, LGLPPFLNSL, IGGKTG, and VPPVYPN, were selected from the conserved regions to design the vaccine construct. The molecular docking demonstrated the higher binding affinity of these epitopes with dog leukocyte antigen (DLA) molecules. The selected epitopes were linked with Salmonella enterica flagellin FliC adjuvants, along with the PADRE sequence, by GGS linkers to construct a vaccine candidate with 272 nucleotides. The codon adaptation and in silico cloning showed that the generated vaccine can be expressed by the E. coli strain, K12, and the sequence of the vaccine construct showed no similarities with dog protein. Our results suggest that the vaccine construct might be useful in preventing canine parvoviral enteritis (CPE) in dogs. Further in vitro and in vivo experiments are needed for the validation of the vaccine candidate.

20.
Biomedicines ; 10(11)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36359237

RESUMO

Avian influenza viruses (AIVs) pose threats to animal and human health. Outbreaks from the highly pathogenic avian influenza virus (HPAIV) in indigenous chickens in Bangladesh are infrequent. This could be attributed to the Myxovirus resistance (Mx) gene. To determine the impact of Mx gene diversity on AIV infections in chicken, we assessed the Mx genes, AIVs, and anti-AIV antibodies. DNA from blood cells, serum, and cloacal swab samples was isolated from non-vaccinated indigenous chickens and vaccinated commercial chickens. Possible relationships were assessed using the general linear model (GLM) procedure. Three genotypes of the Mx gene were detected (the resistant AA type, the sensitive GG type, and the heterozygous AG type). The AA genotype (0.48) was more prevalent than the GG (0.19) and the AG (0.33) genotypes. The AA genotype was more prevalent in indigenous than in commercial chickens. A total of 17 hemagglutinating viruses were isolated from the 512 swab samples. AIVs were detected in two samples (2/512; 0.39%) and subtyped as H1N1, whereas Newcastle disease virus (NDV) was detected in the remaining samples. The viral infections did not lead to apparent symptoms. Anti-AIV antibodies were detected in 44.92% of the samples with levels ranging from 27.37% to 67.65% in indigenous chickens and from 26% to 87.5% in commercial chickens. The anti-AIV antibody was detected in 40.16%, 65.98%, and 39.77% of chickens with resistant, sensitive, and heterozygous genotypes, respectively. The genotypes showed significant association (p < 0.001) with the anti-AIV antibodies. The low AIV isolation rates and high antibody prevalence rates could indicate seroconversion resulting from exposure to the virus as it circulates. Results indicate that the resistant genotype of the Mx gene might not offer anti-AIV protection for chickens.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa