RESUMO
Several lines of evidence suggest that selective sigma-2 (σ2) ligands might be useful for the treatment of solid tumors. However, very few selective σ2 ligands have been identified. This study was aimed at identifying new selective σ2 receptor ligands using a previously identified agent, SYA 013 as a lead. Four groups, homopiperazine, piperazine, tropane and selected oxime analogs of the homopiperazines were identified, synthesized and subsequently screened at the σ1 and σ2 receptors. The results demonstrate that these scaffolds can be modified to obtain selective σ2 receptor ligands. 1-(5-Chloropyridin-2-yl)-4-(3-((4-fluorophenyl)thio)propyl)-1,4-diazepane, 7 and 3-(4-chlorophenyl)-8-(3-((2-fluorophenyl)thio)propyl)-8-azabicyclo[3.2.1]octan-3-ol, 21 were identified as the highest binding affinity ligands (σ2Kiâ¯=â¯2.2â¯nM) and (4-(4-(5-chloropyridin-2-yl)-1,4-diazepan-1-yl)-1-(4-fluorophenyl)-butan-1-one oxime, 22 as a high affinity and the most selective ligand for the σ2 receptor (σ1Ki/σ2Kiâ¯=â¯41.8).
Assuntos
Azepinas/química , Haloperidol/análogos & derivados , Receptores sigma/química , Animais , Azepinas/metabolismo , Haloperidol/química , Haloperidol/metabolismo , Humanos , Ligantes , Piperazina/análogos & derivados , Piperazina/metabolismo , Ligação Proteica , Receptores sigma/metabolismo , Relação Estrutura-AtividadeRESUMO
Our previous study has revealed 4-(4-(4-chlorophenyl)-1,4-diazepan-1-yl)-1-(4-fluorophenyl)butan-1-one·2HCl (SYA013) 1 as a sigma ligand with moderate selectivity for the sigma-2 receptor. Given the overexpression of sigma receptors in solid tumors and reports of sigma ligands with anticancer activities, we selected 1 for evaluation in several solid tumor cell lines. In addition, we have synthesized new analogs of 1 and now report that several of them bind preferentially at the sigma-2 receptor and have shown inhibition of several cancer cell lines including MDA-MB-231, MDA-MB-486, A549, PC-3, MIA PaCa-2 and Panc-1 cells. In particular, compounds 1 and 12 have demonstrated sub-micromolar activity against the Panc-1 cell line. It has also been observed that several of these compounds demonstrate selective toxicity toward cancer cells, when compared to normal cells.
Assuntos
Antineoplásicos/química , Azepinas/química , Haloperidol/análogos & derivados , Receptores sigma/metabolismo , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Azepinas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Haloperidol/química , Haloperidol/metabolismo , Humanos , Ligantes , Receptores sigma/química , Relação Estrutura-AtividadeRESUMO
Triple negative breast cancer (TNBC) is a type of breast cancer associated with early metastasis, poor prognosis, high relapse rates, and mortality. Previously, we demonstrated that SYA013, a selective σ2RL, could inhibit cell proliferation, suppress migration, reduce invasion, and induce mitochondria-mediated apoptosis in MDA-MB-231 cell lines, although we were unable to demonstrate the direct involvement of sigma receptors. This study aimed to determine the anticancer properties and mechanisms of action of SYA014, [4-(4-(4-chlorophenyl)-1,4-diazepan-1-yl)-1-(4-fluorophenyl)butan-1-one oxime], an oxime analogue of SYA013, the contribution of its sigma-2 receptor (σ2R) binding, and its possible synergistic use with cisplatin to improve anticancer properties in two TNBC cell lines, MDA-MB-231 (Caucasian) and MDA-MB-468 (Black). In the present investigation, we have shown that SYA014 displays anticancer properties against cell proliferation, survival, metastasis and apoptosis in the two TNBC cell lines. Furthermore, a mechanistic investigation was conducted to identify the apoptotic pathway by which SYA014 induces cell death in MDA-MB-231 cells. Since SYA014 has a higher binding affinity for σ2R compared to σ1R, we tested the role of σ2R on the antiproliferative property of SYA014 with a σ2R blockade. We also attempted to evaluate the combination effect of SYA014 with cisplatin in TNBC cells.
RESUMO
Triple-negative breast cancer (TNBC) is one of the most malignant cancers associated with early metastasis, poor clinical prognosis, and high recurrence rate. TNBC is a distinct subtype of breast cancer that lacks estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor 2 receptors (HER2). Development of effective TNBC therapies has been limited partially due to the lack of specific molecular targets and chemotherapy involving different cytotoxic drugs suffers from significant side effects and drug-resistance development. Therefore, there is an unmet need for the development of novel and efficient therapeutic drugs with reduced side effects to treat TNBC. We have previously reported that certain analogues of haloperidol (a typical antipsychotic drug used for treating mental/mood disorders such as schizophrenia and bipolar disorder) suppress the viability of a variety of solid tumor cell lines, and we have identified 4-(4-(4-chlorophenyl)-1,4-diazepan-1-yl)-1-(4-fluoro-phenyl)butan-1-one (SYA013) with such antiproliferative properties. Interestingly, unlike haloperidol, SYA013 shows moderate selectivity toward σ2 receptors. In this study, we explored the potential of SYA013 in modulating the important biological events associated with cell survival and progression as well as the mechanistic aspects of apoptosis in a representative TNBC cell line (MDA-MB-231). Our results indicate that SYA013 inhibits the proliferation of MDA-MB-231 cells in a concentration-dependent manner and suppresses cell migration and invasion. Apoptotic studies were also conducted in MDA-MB-468 cells (cells derived from a 51-year old Black female with metastatic adenocarcinoma of the breast.). In addition, we have demonstrated that SYA013 induces MDA-MB-231 cell death through the intrinsic apoptotic pathway and may suppress tumor progression and metastasis. Taken together, our study presents a mechanistic pathway of the anticancer properties of SYA013 against TNBC cell lines and suggests a potential for exploring SYA013 as a lead agent for development against TNBC.