Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Curr Issues Mol Biol ; 44(1): 117-127, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35723388

RESUMO

Hepcidin and ferritin are key proteins of iron homeostasis in mammals. In this study, we characterize a chimera by fusing camel hepcidin to a human ferritin H-chain to verify if it retained the properties of the two proteins. The construct (HepcH) is expressed in E. coli in an insoluble and iron-containing form. To characterize it, the product was incubated with ascorbic acid and TCEP to reduce and solubilize the iron, which was quantified with ferrozine. HepcH bound approximately five times more iron than the wild type human ferritin, due to the presence of the hepcidin moiety. To obtain a soluble and stable product, the chimera was denatured and renatured together with different amounts of L-ferritin of the H-chain in order to produce 24-shell heteropolymers with different subunit proportions. They were analyzed by denaturing and non-denaturing PAGE and by mass spectroscopy. At the 1:5 ratio of HepcH to H- or L-ferritin, a stable and soluble molecule was obtained. Its biological activity was verified by its ability to both bind specifically cell lines that express ferroportin and to promote ferroportin degradation. This chimeric molecule showed the ability to bind both mouse J774 macrophage cells, as well as human HepG2 cells, via the hepcidin-ferroportin axis. We conclude that the chimera retains the properties of both hepcidin and ferritin and might be exploited for drug delivery.

2.
Am J Hematol ; 96(10): 1253-1263, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34343368

RESUMO

Iron-refractory iron deficiency anemia (IRIDA) is an autosomal recessive disorder caused by genetic mutations on TMPRSS6 gene which encodes Matriptase2 (MT2). An altered MT2 cannot appropriately suppress hepatic BMP6/SMAD signaling in case of low iron, hence hepcidin excess blocks dietary iron absorption, leading to a form of anemia resistant to oral iron supplementation. In this study, using the IRIDA mouse model Mask, we characterized homozygous (msk/msk) compared to asymptomatic heterozygous (msk/wt) mice, assessing the major parameters of iron status in different organs, at different ages in both sexes. The effect of carbonyl iron diet was analyzed as control iron supplementation being used for many studies in mice. It resulted effective in both anemic control and msk/msk mice, as expected, even if there is no information about its mechanism of absorption. Then, we mainly compared two forms of oral iron supplement, largely used for humans: ferrous sulfate and Sucrosomial iron. In anemic control mice, the two oral formulations corrected hemoglobin levels from 11.40 ± 0.60 to 15.38 ± 1.71 g/dl in 2-4 weeks. Interestingly, in msk/msk mice, ferrous sulfate did not increase hemoglobin likely due to ferroportin/hepcidin-dependent absorption, whereas Sucrosomial iron increased it from 11.50 ± 0.60 to 13.53 ± 0.64 g/dl mainly in the first week followed by a minor increase at 4 weeks with a stable level of 13.30 ± 0.80 g/dl, probably because of alternative absorption. Thus, Sucrosomial iron, already used in other conditions of iron deficiency, may represent a promising option for oral iron supplementation in IRIDA patients.


Assuntos
Anemia Ferropriva/terapia , Compostos Férricos/uso terapêutico , Compostos Ferrosos/uso terapêutico , Compostos de Ferro/uso terapêutico , Ferro da Dieta/uso terapêutico , Administração Oral , Anemia Ferropriva/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Compostos Férricos/administração & dosagem , Compostos Ferrosos/administração & dosagem , Humanos , Ferro/metabolismo , Compostos de Ferro/administração & dosagem , Ferro da Dieta/administração & dosagem , Masculino , Camundongos
3.
J Biol Chem ; 294(36): 13292-13303, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31315930

RESUMO

Hepcidin is a liver-derived peptide hormone that controls systemic iron homeostasis. Its expression is regulated by the bone morphogenetic protein 6 (BMP6)/SMAD1/5/8 pathway and by the proinflammatory cytokine interleukin 6 (IL6). Proteoglycans that function as receptors of these signaling proteins in the liver are commonly decorated by heparan sulfate, but the potential role of hepatic heparan sulfate in hepcidin expression and iron homeostasis is unclear. Here, we show that modulation of hepatic heparan sulfate significantly alters hepcidin expression and iron metabolism both in vitro and in vivo Specifically, enzymatic removal of heparan sulfate from primary human hepatocytes, CRISPR/Cas9 manipulation of heparan sulfate biosynthesis in human hepatoma cells, or pharmacological manipulation of heparan sulfate-protein interactions using sodium chlorate or surfen dramatically reduced baseline and BMP6/SMAD1/5/8-dependent hepcidin expression. Moreover inactivation of the heparan sulfate biosynthetic gene N-deacetylase and N-sulfotransferase 1 (Ndst1) in murine hepatocytes (Ndst1f/fAlbCre+) reduced hepatic hepcidin expression and caused a redistribution of systemic iron, leading to iron accumulation in the liver and serum of mice. Manipulation of heparan sulfate had a similar effect on IL6-dependent hepcidin expression in vitro and suppressed IL6-mediated iron redistribution induced by lipopolysaccharide in vivo These results provide compelling evidence that hepatocyte heparan sulfate plays a key role in regulating hepcidin expression and iron homeostasis in mice and in human hepatocytes.


Assuntos
Heparitina Sulfato/metabolismo , Hepatócitos/metabolismo , Hepcidinas/genética , Homeostase , Ferro/metabolismo , Animais , Linhagem Celular , Perfilação da Expressão Gênica , Hepcidinas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos , Regiões Promotoras Genéticas/genética
4.
Mol Biol Rep ; 47(2): 1265-1273, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31838658

RESUMO

Ferritin is a molecule with enormous potentiality in biotechnology that have been already used to encapsulate molecules, as contrast in magnetic resonance imaging and to carry epitopes. We proposed to use it to carry another key protein of iron metabolism, hepcidin that is a small hormone peptide that control systemic iron homeostasis. In this work, we purified the previously produced camel hepcidin and human H-ferritin heteropolymer (HepcH-FTH) and to monitor its binding capability toward J744 cell line in presence or absence of ferric ammonium citrate. Fused camel hepcidin and human H-ferritin monomer (HepcH) as well as the assembled HepcH-FTH heteropolymer (ratio 1:5) was easily purified by a one-step purification using size exclusion chromatography. SDS-PAGE electrophoresis of HepcH, purified from soluble and insoluble fractions, showed a single band of 24 kDa with an estimated purity of at least 90%. The purification yields of HepcH from the soluble and insoluble fractions was, respectively, of about 6.80 and 2 mg/L of bacterial culture. Time curse cellular binding assays of HepcH-FTH revealed its great potential to bind the J774 cells after 15 min of incubation. Furthermore, HepcH-FTH was able to degrade ferroportin, the unique hepcidin receptor, even after 30 min of incubation with J774 cells treated with 100 µM ferric ammonium citrate. In conclusion, we proposed ferritin as a peptide carrier to promote the association of the hybrid HepcH-FTH nanoparticle with a particular type of cell for therapeutic or diagnostic.


Assuntos
Ferritinas/metabolismo , Hepcidinas/metabolismo , Macrófagos/metabolismo , Multimerização Proteica , Proteínas Recombinantes/metabolismo , Animais , Camelus , Linhagem Celular , Ferritinas/química , Hepcidinas/química , Humanos , Macrófagos/imunologia , Camundongos , Ligação Proteica , Proteínas Recombinantes/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
5.
Molecules ; 22(4)2017 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-28397746

RESUMO

The peptide hormone hepcidin is a key controller of systemic iron homeostasis, and its expression in the liver is mainly regulated by bone morphogenetic proteins (BMPs), which are heparin binding proteins. In fact, heparins are strong suppressors of hepcidin expression in hepatic cell lines that act by inhibiting the phosphorylation of SMAD1/5/8 proteins elicited by the BMPs. The inhibitory effect of heparins has been demonstrated in cells and in mice, where subcutaneous injections of non-anticoagulant heparins inhibited liver hepcidin expression and increased iron bioavailability. The chemical characteristics for high anti-hepcidin activity in vitro and in vivo include the 2O-and 6O-sulfation and a molecular weight above 7 kDa. The most potent heparins have been found to be the super-sulfated ones, active in hepcidin suppression with a molecular weight as low as 4 kDa. Moreover, the alteration of endogenous heparan sulfates has been found to cause a reduction in hepcidin expression in vitro and in vivo, indicating that heparins act by interfering with the interaction between BMPs and components of the complex involved in the activation of the BMP/SMAD1/5/8 pathway. This review summarizes recent findings on the anti-hepcidin activity of heparins and their possible use for the treatment of anemia caused by hepcidin excess, including the anemia of chronic diseases.


Assuntos
Anemia/tratamento farmacológico , Anemia/metabolismo , Heparina/farmacologia , Heparina/uso terapêutico , Hepcidinas/antagonistas & inibidores , Anemia/etiologia , Animais , Proteína Morfogenética Óssea 6/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Expressão Gênica , Heparitina Sulfato/metabolismo , Hepcidinas/genética , Hepcidinas/metabolismo , Homeostase , Humanos , Ferro/metabolismo , Fígado/metabolismo , Ligação Proteica
8.
Biochim Biophys Acta ; 1850(6): 1267-73, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25749565

RESUMO

BACKGROUND: Three functional ferritin genes have been identified so far in mammals, and they encode the cytosolic Heavy (FTH) and Light chain (FTL) and the mitochondrial ferritin. The expression of a transcript by a fourth ferritin-like gene (Ferritin-Heavy-Polypeptide-Like-17, FTHL17) on the X chromosome was reported in mouse spermatogonia and in early embryonic cells. METHODS: The intronless human FTHL17 gene encodes a protein with 64% identity to human FTH with substitution of key residues of the ferroxidase center. The gene was cloned into vectors for expression in Escherichia coli and mammalian cells, linked to a flag-tag. RESULTS: The recombinant FTHL17 from E. coli purified as an assembled 24-mer ferritin devoid of ferroxidase activity and with a reduced physical stability. When transiently expressed in mammalian cells the flag-FTHL17 assembled in ferritin shells that showed reduced stability to denaturants compared with flag H and L ferritins. Immunocytochemistry with anti-flag antibody decorated the nuclei of flag-FTHL17 transfected COS cells, but not those of the cells transfected with flag-FTH or flag-FTL. CONCLUSIONS: We concluded that FTHL17 encodes a ferritin-like protein without ferroxidase activity. Its restricted embryonic expression and partial nuclear localization suggest that this novel ferritin type may have functions other than iron storage. GENERAL SIGNIFICANCE: The work confirms the presence of a fourth functional human ferritin gene with properties distinct from the canonical cytosolic ones.


Assuntos
Apoferritinas/metabolismo , Núcleo Celular/metabolismo , Sequência de Aminoácidos , Animais , Apoferritinas/química , Apoferritinas/genética , Células COS , Diferenciação Celular , Chlorocebus aethiops , Células-Tronco Embrionárias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células Hep G2 , Humanos , Camundongos , Dados de Sequência Molecular , Estrutura Molecular , Desnaturação Proteica , Estabilidade Proteica , Proteínas Recombinantes/metabolismo , Transfecção
9.
Blood ; 123(10): 1564-73, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24398330

RESUMO

Hepcidin controls systemic iron availability, and its excess contributes to the anemia of chronic diseases, the most prevalent anemia in hospitalized patients. We previously reported that heparins are efficient hepcidin inhibitors both in vitro and in vivo, but their anticoagulant activity limits therapeutic use. We studied nonanticoagulant heparins produced by N-acetylation and oxidation/reduction (glycol-split) that lost antithrombin-binding affinity. Four nonanticoagulant heparins inhibited hepcidin expression in hepatic HepG2 cells and primary hepatocytes. The 2 most potent ones used in mice suppressed liver hepcidin expression and serum hepcidin in 6 hours, with a significant decrease of spleen iron. This occurred also in lipopolysaccharide (LPS)-treated animals that mimic inflammation, as well as after chronic 1-week treatments, without evident adverse effects on coagulation. Heparin injections increased iron mobilization and facilitated the recovery from the anemia induced by heat-killed Brucella abortus, a model of inflammatory anemia. The heparins were used also in Bmp6(-/-) mice. A single dose of heparin reduced the already low level of hepcidin of these mice and prevented its induction by LPS. These nonanticoagulant compounds impair bone morphogenetic protein /sons of mothers against decapentaplegic signaling with no evident adverse effect in vivo, even when administered chronically. They may offer a strategy for the treatment of diseases with high hepcidin levels.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Heparina/análogos & derivados , Hepcidinas/genética , Anemia/induzido quimicamente , Anemia/tratamento farmacológico , Anemia/genética , Animais , Proteína Morfogenética Óssea 6/genética , Proteína Morfogenética Óssea 6/metabolismo , Linhagem Celular , Dermatan Sulfato/farmacologia , Relação Dose-Resposta a Droga , Feminino , Células Hep G2 , Heparina/administração & dosagem , Heparina/farmacologia , Hepcidinas/metabolismo , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Proteína 1 Inibidora de Diferenciação/genética , Ferro/metabolismo , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas , Baço/efeitos dos fármacos , Baço/metabolismo , Fatores de Tempo , Ativação Transcricional/efeitos dos fármacos
10.
Chemistry ; 21(2): 808-13, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25370199

RESUMO

The simultaneous measurement of the decrease of available Fe(II) ions and the increase of available Fe(III) ions allowed the analysis of the ferroxidase activity of two distinct apoferritins. Although recombinant human apoferritin (HuFtH) rapidly oxidizes Fe(II) to Fe(III) , this iron is not properly stored in the ferritin cavity, as otherwise occurs in horse-spleen H/L-apoferritin (HsFt; H=heavy subunit, L=light subunit). Iron storage in these apoferritins was also studied in the presence of two copper-loaded mammalian metallothioneins (MT2 and MT3), a scenario that occurs in different brain-cell types. For HuFtH, unstored Fe(III) ions trigger the oxidation of Cu-MT2 with concomitant Cu(I) release. In contrast, there is no reaction with Cu-MT2 in the case of HsFt. Similarly, Cu-MT3 does not react during either HuFtH or HsFt iron reconstitution. Significantly, the combination of ferritin and metallothionein isoforms reported in glia and neuronal cells are precisely those combinations that avoid a harmful release of Fe(II) and Cu(I) ions.


Assuntos
Apoferritinas/metabolismo , Ferritinas/metabolismo , Metalotioneína/metabolismo , Animais , Compostos Férricos/análise , Compostos Férricos/metabolismo , Ferritinas/química , Compostos Ferrosos/análise , Compostos Ferrosos/metabolismo , Cavalos , Humanos , Metalotioneína/análise , Proteínas Recombinantes/metabolismo
11.
Cancers (Basel) ; 16(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473215

RESUMO

Identifying the molecular mechanisms underlying radioresistance is a priority for the treatment of RMS, a myogenic tumor accounting for approximately 50% of all pediatric soft tissue sarcomas. We found that irradiation (IR) transiently increased phosphorylation of Akt1, Src, and Cav1 in human RD and RH30 lines. Synthetic inhibition of Akt1 and Src phosphorylation increased ROS levels in all RMS lines, promoting cellular radiosensitization. Accordingly, the elevated activation of the Akt1/Src/Cav1 pathway, as detected in two RD lines characterized by overexpression of a myristoylated Akt1 form (myrAkt1) or Cav1 (RDCav1), was correlated with reduced levels of ROS, higher expression of catalase, and increased radioresistance. We found that treatment with cholesterol-lowering drugs such as lovastatin and simvastatin promoted cell apoptosis in all RMS lines by reducing Akt1 and Cav1 levels and increasing intracellular ROS levels. Combining statins with IR significantly increased DNA damage and cell apoptosis as assessed by γ histone 2AX (γH2AX) staining and FACS analysis. Furthermore, in combination with the chemotherapeutic agent actinomycin D, statins were effective in reducing cell survival through increased apoptosis. Taken together, our findings suggest that the molecularly linked signature formed by Akt1, Src, Cav1, and catalase may represent a prognostic determinant for identifying subgroups of RMS patients with higher probability of recurrence after radiotherapy. Furthermore, statin-induced oxidative stress could represent a treatment option to improve the success of radiotherapy.

12.
Clin Exp Med ; 23(6): 2487-2502, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36764998

RESUMO

Rhabdomyosarcoma (RMS) is an aggressive rare neoplasm that derives from mesenchymal cells, which frequently develops resistance to the current therapies and the formation of metastases. Thus, new therapies are needed. The alteration of iron metabolism in cancer cells was effective in reducing the progression of many tumors but not yet investigated in RMS. Here we investigated the effect of iron modulation in RMS both in vitro and in vivo. We first characterized the most used RMS cell lines representing the most common subtypes, embryonal (ERMS, RD cells) and alveolar (ARMS, RH30 cells), for their iron metabolism, in basal condition and in response to its modulation. Then we investigated the effects of both iron overload and chelation strategies in vitro and in vivo. RMS cell lines expressed iron-related proteins, even if at lower levels compared to hepatic cell lines and they are correctly modulated in response to iron increase and deprivation. Interestingly, the treatment with different doses of ferric ammonium citrate (FAC, as iron source) and with deferiprone (DFP, as iron chelator), significantly affected the cell viability of RD and RH30. Moreover, iron supplementation (in the form of iron dextran) or iron chelation (in the form of DFP) were also effective in vivo in inhibiting the tumor mass growth both derived from RD and RH30 with iron chelation treatment the most effective one. All the data suggest that the iron modulation could be a promising approach to overcome the RMS tumor growth. The mechanism of action seems to involve the apoptotic cell death for both iron supplementation and chelation with the concomitant induction of ferroptosis in the case of iron supplementation.


Assuntos
Rabdomiossarcoma , Humanos , Linhagem Celular Tumoral , Rabdomiossarcoma/tratamento farmacológico , Rabdomiossarcoma/metabolismo , Rabdomiossarcoma/patologia , Apoptose , Ferro , Quelantes de Ferro/farmacologia , Quelantes de Ferro/uso terapêutico
13.
Cell Death Discov ; 9(1): 81, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36872341

RESUMO

Prostate cancer (PCa) is a leading cause of death in the male population commonly treated with androgen deprivation therapy that often relapses as androgen-independent and aggressive castration-resistant prostate cancer (CRPC). Ferroptosis is a recently described form of cell death that requires abundant cytosolic labile iron to promote membrane lipid peroxidation and which can be induced by agents that inhibit the glutathione peroxidase-4 activity such as RSL3. Exploiting in vitro and in vivo human and murine PCa models and the multistage transgenic TRAMP model of PCa we show that RSL3 induces ferroptosis in PCa cells and demonstrate for the first time that iron supplementation significantly increases the effect of RSL3 triggering lipid peroxidation, enhanced intracellular stress and leading to cancer cell death. Moreover, the combination with the second generation anti-androgen drug enzalutamide potentiates the effect of the RSL3 + iron combination leading to superior inhibition of PCa and preventing the onset of CRPC in the TRAMP mouse model. These data open new perspectives in the use of pro-ferroptotic approaches alone or in combination with enzalutamide for the treatment of PCa.

14.
Cells ; 11(18)2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36139434

RESUMO

In pediatric rhabdomyosarcoma (RMS), elevated Akt signaling is associated with increased malignancy. Here, we report that expression of a constitutively active, myristoylated form of Akt1 (myrAkt1) in human RMS RD cells led to hyperactivation of the mammalian target of rapamycin (mTOR)/70-kDa ribosomal protein S6 kinase (p70S6K) pathway, resulting in the loss of both MyoD and myogenic capacity, and an increase of Ki67 expression due to high cell mitosis. MyrAkt1 signaling increased migratory and invasive cell traits, as detected by wound healing, zymography, and xenograft zebrafish assays, and promoted repair of DNA damage after radiotherapy and doxorubicin treatments, as revealed by nuclear detection of phosphorylated H2A histone family member X (γH2AX) through activation of DNA-dependent protein kinase (DNA-PK). Treatment with synthetic inhibitors of phosphatidylinositol-3-kinase (PI3K) and Akt was sufficient to completely revert the aggressive cell phenotype, while the mTOR inhibitor rapamycin failed to block cell dissemination. Furthermore, we found that pronounced Akt1 signaling increased the susceptibility to cell apoptosis after treatments with 2-deoxy-D-glucose (2-DG) and lovastatin, enzymatic inhibitors of hexokinase, and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), especially in combination with radiotherapy and doxorubicin. In conclusion, these data suggest that restriction of glucose metabolism and the mevalonate pathway, in combination with standard therapy, may increase therapy success in RMS tumors characterized by a dysregulated Akt signaling.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Rabdomiossarcoma Embrionário , Animais , Criança , Reparo do DNA , Proteína Quinase Ativada por DNA/genética , Desoxiglucose , Doxorrubicina/farmacologia , Glucose , Glicólise , Hexoquinase/metabolismo , Histonas/metabolismo , Humanos , Antígeno Ki-67/metabolismo , Lovastatina , Inibidores de MTOR , Ácido Mevalônico , Oxirredutases/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositóis , Proteínas Proto-Oncogênicas c-akt/metabolismo , Rabdomiossarcoma Embrionário/tratamento farmacológico , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Peixe-Zebra/genética
15.
Biochim Biophys Acta Mol Cell Res ; 1868(2): 118913, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33245979

RESUMO

Ferroptosis is a regulated cell death characterized by a lethal accumulation of lipid peroxides due to an increase of intracellular iron and a decrease of antioxidant capacity. The reduction of antioxidant activity is obtained by using chemical agents, such as erastin and RSL3, the first one inhibiting the transmembrane cystine-glutamate antiporter causing a cysteine and glutathione depletion and the second one inactivating directly the glutathione peroxidase 4 (GPX4) respectively. The role of iron and its related proteins in supporting the formation of lipid peroxides, is not completely understood hence to try to shed light on it we generated HeLa clones with altered ferritinophagy, the ferritin degradation process, by knocking-out or overexpressing Nuclear Receptor Coactivator 4 (NCOA4), the ferritin autophagic cargo-receptor. NCOA4 deficiency abolished ferritinophagy increasing ferritin level and making the cells more resistant to erastin, but unexpectedly more sensitive to RSL3. Interestingly, we found that erastin promoted ferritinophagy in HeLa cells expressing NCOA4, increasing the free iron, lipid peroxidation and the sensitivity to ferroptosis. In contrast, RSL3 did not modulate ferritinophagy, while NCOA4 overexpression delayed RSL3-induced cell death suggesting that RSL3 mechanism of action is independent of ferritin degradation process. Therefore, the ferritin-iron release in the execution of ferroptosis seems to depend on the inducing compound, its target and downstream pathway of cell death activation.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Carbolinas/farmacologia , Ferritinas/metabolismo , Ferroptose/efeitos dos fármacos , Coativadores de Receptor Nuclear/metabolismo , Piperazinas/farmacologia , Proteólise/efeitos dos fármacos , Autofagia/genética , Ferroptose/genética , Técnicas de Inativação de Genes , Células HeLa , Humanos , Ferro/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Coativadores de Receptor Nuclear/genética , Estresse Oxidativo/genética , Transfecção
16.
Biochim Biophys Acta Gen Subj ; 1865(2): 129799, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33232799

RESUMO

BACKGROUND: The bone morphogenetic protein 6 (BMP6) is a crucial inducer of hepcidin, the peptide hormone that regulates the iron availability in our body. Hepcidin expression is influenced by hepatic heparan sulfate (HS) and by heparin administration, suggesting BMP6 interaction with heparin/HS. The BMP2/4 subfamily has been deeply characterized to have a N-terminal heparin/HS binding domain (HBD), whose basic residues contact the sulfate groups on heparin and HS. Such detailed characterization is still required for other, structurally different BMPs, including BMP6. METHODS: BMP6 peptides encompassing potential HBDs were analysed on heparin-functionalized plates and microcantilevers, and on membrane HS expressing CHO-K1 cells. Monomeric wild-type BMP6 and mutants were produced, substituting the basic residues with non-charged ones, and their affinity to the heparin-column was measured. The BMP6-heparin interaction was also predicted at atomic level by in silico molecular dynamics. RESULTS: N-terminal and C-terminal BMP6 peptides showed high heparin affinity in solid-phase assays. The mutation of the two sites (R5L, R6S, R7L and K126N, K127N, R129S) abolished the heparin-binding activity of the recombinant monomeric BMP6. Monomeric BMP6 and peptides specifically bound to membrane HS of CHO-K1 cells through the same domains. Molecular dynamic studies supported the role of the two HBDs, suggesting a cooperative behaviour. CONCLUSIONS: In BMP6, N-terminal (R5, R6, R7) and C-terminal (K126, K127, R129) domains mediate the interaction with heparin and HS. GENERAL SIGNIFICANCE: This study provides the molecular mechanism supporting the use of heparin to sequester BMP6 and inhibit hepcidin expression, a novel clinical approach for high-hepcidin iron disorders.


Assuntos
Proteína Morfogenética Óssea 6/metabolismo , Heparina/metabolismo , Heparitina Sulfato/metabolismo , Animais , Sítios de Ligação , Proteína Morfogenética Óssea 6/química , Células CHO , Cricetulus , Células Hep G2 , Hepcidinas/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas
17.
Cancer Lett ; 505: 1-12, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33610729

RESUMO

The aim of this work was to investigate whether Caveolin-1 (Cav-1), a membrane scaffolding protein widely implicated in cancer, may play a role in radiation response in rhabdomyosarcoma (RMS), a pediatric soft tissue tumor. For this purpose, we employed human RD cells in which Cav-1 expression was stably increased via gene transfection. After radiation treatment, we observed that Cav-1 limited cell cycle arrest in the G2/M phase and enhanced resistance to cell senescence and apoptosis via reduction of p21Cip1/Waf1, p16INK4a and Caspase-3 cleavage. After radiotherapy, Cav-1-mediated cell radioresistance was characterized by low accumulation of H2AX foci, as confirmed by Comet assay, marked neutralization of reactive oxygen species (ROS) and enhanced DNA repair via activation of ATM, Ku70/80 complex and DNA-PK. We found that Cav-1-overexpressing RD cells, already under basal conditions, had higher glutathione (GSH) content and greater catalase expression, which conferred protection against acute treatment with hydrogen peroxide. Furthermore, pre-treatment of Cav-1-overexpressing cells with PP2 or LY294002 compounds restored the sensitivity to radiation treatment, indicating a role for Src-kinases and Akt pathways in Cav-1-mediated radioresistance. These findings were confirmed using radioresistant RD and RH30 lines generated by hypofractionated radiotherapy protocol, which showed marked increase of Cav-1, catalase and Akt, and sensitivity to PP2 and LY294002 treatment. In conclusion, these data suggest that concerted activity of Cav-1 and catalase, in cooperation with activation of Src-kinase and Akt pathways, may represent a network of vital mechanisms that allow irradiated RMS cells to evade cell death induced by oxidative stress and DNA damage.


Assuntos
Caveolina 1/fisiologia , Reparo do DNA , Estresse Oxidativo , Tolerância a Radiação , Rabdomiossarcoma/radioterapia , Apoptose , Linhagem Celular Tumoral , Humanos , Proteínas Proto-Oncogênicas c-akt/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Rabdomiossarcoma/metabolismo , Rabdomiossarcoma/patologia , Quinases da Família src/fisiologia
18.
Free Radic Biol Med ; 169: 294-303, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33892112

RESUMO

Ferroptosis is a form of regulated cell death dependent on iron, reactive oxygen species and characterized by the accumulation of lipid peroxides. It can be experimentally initiated by chemicals, such as erastin and RSL3, that modulate GPX4 activity, the cellular antioxidant machinery that avert lipid peroxidation. The study aimed to investigate mitochondrial respiration and ferritin function as biomarkers of ferroptosis sensitivity of HepG2 and HA22T/VGH, two Hepatocellular Carcinoma (HCC) cell line models. Cell viability was determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay, labile iron levels were determined using Calcein-AM fluorescence microscopy, ferritin, glutathione and lipid peroxidation were assayed with commercially available kits. The Seahorse assay was used to investigate mitochondrial function in the cells. The study shows that highly differentiated HepG2 cells were more sensitive to RSL3-induced ferroptosis than the poorly differentiated HA22T/VGH (HCC) cell line (RSL3 IC50 0.07 µM in HepG2 vs 0.3 µM in HA22T/VGH). Interestingly, HepG2 exhibited higher mitochondrial respiration and lower glycolytic activity than HA22T/VGH and were more sensitive to RSL3-induced ferroptosis, indicating a mitochondrial-specific mechanism of action of RSL3. Interestingly, iron metabolism seems to be involved in this different sensitivity, specifically, the downregulation of H-ferritin (but not of L-subunit), makes HA22T/VGH more sensitive toward both RSL3-and iron-induced ferroptosis. Hence only the H-ferritin seems involved in the protection from this cell death process.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Apoferritinas/genética , Carbolinas , Linhagem Celular , Humanos , Mitocôndrias , Respiração
19.
Biochem Pharmacol ; 175: 113867, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32088260

RESUMO

Hepcidin peptide is crucial in the regulation of systemic iron availability controlling its uptake from the diet and its release from the body storage tissues. Hepcidin dysregulation causes different human disorders ranging from iron overload (e.g. hemochromatosis) to iron deficiency (e.g. anemia). Hepcidin excess is common in the Anemia of Chronic Diseases or Anemia of Inflammation and in the genetic form of anemia named IRIDA; the pharmacological downregulation of hepcidin in these disorders could improve the anemia. Commercial heparins were shown to be strong inhibitors of hepcidin expression, by interfering with BMP6/SMAD pathway. The non-anti-coagulant heparins, modified to abolish the anti-thrombin binding site, were equally potent and could be used to improve iron status. To perform its anti-hepcidin activity heparin needs 2O- and 6O-sulfation and an average molecular weight (MW) up to 4000-8000 Dalton, depending on the sulfation level. The pentosane polysulfate (PPS), which shares with heparin a high degree of sulfation, is a compound with low anti-coagulant activity that is already in use for pharmaceutical treatment. In the present work we analyzed the anti-hepcidin activity of PPS in vitro and in vivo. We found that it acts as a strong inhibitor of hepcidin expression in HepG2 cells with an effect already visible after 2-3 h of treatment. It also suppressed hepcidin in mice in a dose dependent manner after 3 h and with a significant redistribution of systemic iron without evident side effects. PPS is also able to abolish the LPS dependent hepcidin upregulation similarly to that showed for heparin derivatives. These results suggest PPS as an interesting compound to control hepcidin in vivo.


Assuntos
Expressão Gênica/efeitos dos fármacos , Hepcidinas/antagonistas & inibidores , Poliéster Sulfúrico de Pentosana/farmacologia , Administração Oral , Animais , Expressão Gênica/imunologia , Células Hep G2 , Hepcidinas/sangue , Hepcidinas/genética , Humanos , Injeções Subcutâneas , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Poliéster Sulfúrico de Pentosana/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa