Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Br J Nutr ; 113(7): 1044-55, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25778541

RESUMO

The goal of eating five servings of fruits and vegetables a day has not yet been achieved. The intake of polyphenols such as anthocyanins (ACN) could be improved by consuming smoothies and juices that are increasingly popular, especially in children; however, bioavailability data concerning food matrix effects are scarce. Thus, we conducted a randomised, cross-over, bioavailability study (n 10) to determine the bioavailability of ACN and their metabolites from an ACN-rich grape/blueberry juice (841 mg ACN/litre) and smoothie (983 mg ACN/litre) in vivo, and the uptake of a corresponding grape/blueberry extract in vitro. After the intake of beverage (0·33 litres), plasma and fractionated urine samples were collected and analysed by ultra-performance liquid chromatography coupled to MS. The most abundant ACN found in plasma and urine were malvidin and peonidin as native ACN and as glucuronidated metabolites as well as 3,4-dihydroxybenzoic acid (3,4-DHB); minor ACN (delphinidin, cyanidin and petunidin) were only detected as native glycosides. Plasma pharmacokinetics and recoveries of urinary metabolites of ACN were not different for juice or smoothie intake; however, the phenolic acid 3,4-DHB was significantly better bioavailable from juice in comparison to smoothie. In vitro data with absorptive intestinal cells indicated that despite their weak chemical stability, ACN and 3,4-DHB could be detected at the basal side in their native forms. Whether smoothies as well as juices should be recommended to increase the intake of potentially health-promoting ACN and other polyphenols requires the consideration of other ingredients such as their relatively high sugar content.


Assuntos
Antocianinas/metabolismo , Antioxidantes/metabolismo , Bebidas , Alimentos Orgânicos , Frutas/química , Hidroxibenzoatos/metabolismo , Fenóis/metabolismo , Adulto , Antocianinas/sangue , Antocianinas/urina , Antioxidantes/análise , Mirtilos Azuis (Planta)/química , Células CACO-2 , Estudos Cross-Over , Método Duplo-Cego , Feminino , Alemanha , Glucuronídeos/sangue , Glucuronídeos/urina , Humanos , Hidroxibenzoatos/sangue , Hidroxibenzoatos/urina , Hidroxilação , Absorção Intestinal , Masculino , Fenóis/sangue , Fenóis/urina , Extratos Vegetais/metabolismo , Vitis/química , Adulto Jovem
2.
Nutrients ; 11(8)2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31412639

RESUMO

(1) Background: Polyphenols (PP) play an important role in the prevention of non-communicable diseases and may contribute to healthy aging. To investigate the molecular and cellular aspects of PP metabolites on longevity with a focus on mitochondrial function, we applied a pre-fermented mixture of polyphenols (Rechtsregulat®, RR) to rodents and nematodes. (2) Methods: The lifespans of Navar Medical Research Institute (NMRI) mice and C. elegans were recorded. The heat-stress resistance (37 °C) of C. elegans N2 was measured using nucleic staining. Respiration and membrane potential (ΔΨm) were measured in isolated mitochondria. The energetic metabolites adenosine triphosphate (ATP), lactate, and pyruvate were determined in lysates. Expression levels of longevity related genes were determined using quantitative real time polymerase chain reaction (qRT-PCR). Phenolic compounds were identified using ultra high performance liquid chromatography-diode array detection-Iontrap-multiple stage mass spectrometry (UHPLC-DAD-Iontrap-MSn). (3) Results: Several phenolic metabolites including protocatechuic acid (PCA) were identified in RR. Feeding of mice with RR resulted in a significantly increased lifespan. Heat-stress resistance (RR *** p = 0.0006; PCA **** p < 0.0001), median lifespan (NMRI: RR ** p = 0.0035; C. elegans RR * p = 0.0279; PCA **** p < 0.0001), and activity of mitochondrial respiratory chain complexes (RR *-** p = 0.0237 - 0.0052; PCA * p = 0.019 - 0.0208) of C. elegans were significantly increased after incubation with RR (10%) or PCA (780 µM). PCA significantly improved nematodes ΔΨm (* p = 0.02058) and ATP levels (* p = 0.029). RR significantly up-regulated lactate levels, indicating enhanced glycolysis. The expression levels of longevity related genes daf-16, sir-2.1, and skn-1 were significantly upregulated after PCA, and partially after RR administration. (4) Conclusion: Phenolic metabolites such as PCA have the potential to enhance health and lifespan and mitochondrial function, and thus may contribute to healthy aging.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Caenorhabditis elegans/metabolismo , Metabolismo Energético , Envelhecimento Saudável , Longevidade , Mitocôndrias/metabolismo , Polifenóis/metabolismo , Trifosfato de Adenosina/metabolismo , Ração Animal , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dieta , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Fermentação , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Envelhecimento Saudável/genética , Resposta ao Choque Térmico , Hidrolases/genética , Hidrolases/metabolismo , Ácido Láctico/metabolismo , Longevidade/genética , Masculino , Potencial da Membrana Mitocondrial , Camundongos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Valor Nutritivo , Sirtuínas/genética , Sirtuínas/metabolismo , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Alzheimers Res Ther ; 10(1): 18, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29433569

RESUMO

BACKGROUND: Current approved drugs for Alzheimer's disease (AD) only attenuate symptoms, but do not cure the disease. The pirinixic acid derivate MH84 has been characterized as a dual gamma-secretase/proliferator activated receptor gamma (PPARγ) modulator in vitro. Pharmacokinetic studies in mice showed that MH84 is bioavailable after oral administration and reaches the brain. We recently demonstrated that MH84 improved mitochondrial dysfunction in a cellular model of AD. In the present study, we extended the pharmacological characterization of MH84 to 3-month-old Thy-1 AßPPSL mice (harboring the Swedish and London mutation in human amyloid precursor protein (APP)) which are characterized by enhanced AßPP processing and cerebral mitochondrial dysfunction, representing a mouse model of early AD. METHODS: Three-month-old Thy-1 AßPPSL mice received 12 mg/kg b.w. MH84 by oral gavage once a day for 21 days. Mitochondrial respiration was analyzed in isolated brain mitochondria, and mitochondrial membrane potential and ATP levels were determined in dissociated brain cells. Citrate synthase (CS) activity was determined in brain tissues and MitoTracker Green fluorescence was measured in HEK293-AßPPwt and HEK293-AßPPsw cells. Soluble Aß1-40 and Aß1-42 levels were determined using ELISA. Western blot analysis and qRT-PCR were used to measure protein and mRNA levels, respectively. RESULTS: MH84 reduced cerebral levels of the ß-secretase-related C99 peptide and of Aß40 levels. Mitochondrial dysfunction was ameliorated by restoring complex IV (cytochrome-c oxidase) respiration, mitochondrial membrane potential, and levels of ATP. Induction of PPARγ coactivator-1α (PGC-1α) mRNA and protein expression was identified as a possible mode of action that leads to increased mitochondrial mass as indicated by enhanced CS activity, OXPHOS levels, and MitoTracker Green fluorescence. CONCLUSIONS: MH84 modulates ß-secretase processing of APP and improves mitochondrial dysfunction by a PGC-1α-dependent mechanism. Thus, MH84 seems to be a new promising therapeutic agent with approved in-vivo activity for the treatment of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Caproatos/farmacologia , Mitocôndrias/efeitos dos fármacos , Doenças Mitocondriais/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Pirimidinas/farmacologia , Trifosfato de Adenosina/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Caproatos/uso terapêutico , Modelos Animais de Doenças , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Células HEK293 , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacocinética , Fragmentos de Peptídeos/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Pirimidinas/uso terapêutico , RNA Mensageiro/metabolismo
4.
Neuromolecular Med ; 18(3): 378-95, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27455862

RESUMO

Dementia contributes substantially to the burden of disability experienced at old age, and mitochondrial dysfunction (MD) was identified as common final pathway in brain aging and Alzheimer's disease. Due to its early appearance, MD is a promising target for nutritional prevention strategies and polyphenols as potential neurohormetic inducers may be strong neuroprotective candidates. This study aimed to investigate the effects of a polyphenol-rich grape skin extract (PGE) on age-related dysfunctions of brain mitochondria, memory, life span and potential hormetic pathways in C57BL/6J mice. PGE was administered at a dose of 200 mg/kg body weight/d in a 3-week short-term, 6-month long-term and life-long study. MD in the brains of aged mice (19-22 months old) compared to young mice (3 months old) was demonstrated by lower ATP levels and by impaired mitochondrial respiratory complex activity (except for mice treated with antioxidant-depleted food pellets). Long-term PGE feeding partly enhanced brain mitochondrial respiration with only minor beneficial effect on brain ATP levels and memory of aged mice. Life-long PGE feeding led to a transient but significant shift of survival curve toward higher survival rates but without effect on the overall survival. The moderate effects of PGE were associated with elevated SIRT1 but not SIRT3 mRNA expressions in brain and liver tissue. The beneficial effects of the grape extract may have been influenced by the profile of bioavailable polyphenols and the starting point of interventions.


Assuntos
Memória/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Extratos Vegetais/farmacologia , Vitis/química , Envelhecimento , Animais , Encéfalo/patologia , Longevidade/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/fisiologia
5.
Neuromolecular Med ; 18(3): 347-63, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27350374

RESUMO

Aging represents a major risk factor for the development of neurodegenerative diseases like Alzheimer's disease (AD). As mitochondrial dysfunction plays an important role in brain aging and occurs early in the development of AD, the prevention of mitochondrial dysfunction might help to slow brain aging and the development of neurodegenerative diseases. Rice bran extract (RBE) contains high concentrations of vitamin E congeners and γ-oryzanol. We have previously shown that RBE increased mitochondrial function and protected from mitochondrial dysfunction in vitro and in short-term in vivo feeding studies. To mimic the use of RBE as food additive, we have now investigated the effects of a long-term (6 months) feeding of RBE on survival, behavior and brain mitochondrial function in aged NMRI mice. RBE administration significantly increased survival and performance of aged NMRI mice in the passive avoidance and Y-maze test. Brain mitochondrial dysfunction found in aged mice was ameliorated after RBE administration. Furthermore, data from mRNA and protein expression studies revealed an up-regulation of mitochondrial proteins in RBE-fed mice, suggesting an increase in mitochondrial content which is mediated by a peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α)-dependent mechanism. Our findings suggest that a long-term treatment with a nutraceutical containing RBE could be useful for slowing down brain aging and thereby delaying or even preventing AD.


Assuntos
Encéfalo/fisiologia , Cognição/fisiologia , Suplementos Nutricionais , Mitocôndrias/fisiologia , Oryza , Fatores Etários , Animais , Camundongos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Análise de Sobrevida , Tempo
6.
Food Funct ; 6(4): 1136-49, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25690135

RESUMO

BACKGROUND: Anthocyanins (ACNs) are the most prevalent flavonoids in berries and their health promoting effects on vascular functions are still discussed. The aim of the present study was to identify the anti-inflammatory effect of ACNs on activated human umbilical vein endothelial cells (HUVECs) after their transport across an epithelial monolayer. STUDY DESIGN: We established a transwell epithelial-endothelial co-culture system with Caco-2/HT29-B6 cells mimicking the intestinal layer and HUVECs as endothelial cells mimicking the vascular layer. Caco-2 were seeded alone (100%) or together with HT29-B6 cells (10 and 20%) on transwell inserts in order to simulate different metabolization sides of the gut. ACNs as well as malvidin-3-glucoside (M3G) were applied to the luminal compartment of the transwell-system. Transport and degradation rates were determined by high performance liquid chromatography with ultraviolet detection (HPLC-UV) or by ultra-PLC coupled to mass spectrometry (UPLC-MS). After 4 hours incubation time, co-cultured HUVECs were used immediately (short-term incubation) or after 20 hours (long-term incubation). Thereafter, HUVECs were stimulated for 3 hours with 1 ng mL(-1) TNF-α to mimic a low-grade or 10 ng mL(-1) to mimic a high-grade inflammation. Afterwards, (1.) leukocyte adhesion, (2.) expression of cell adhesion molecules (ICAM-1, VCAM-1 and E-selectin) and (3.) cytokine expression and secretion (IL-6 and IL-8) were determined using flow cytometry and real-time PCR. RESULTS: Degradation and incubation studies revealed that ACNs were differently degraded depending on the ACN structure and the seeding densities. Incubation of ACNs and M3G to Caco-2 cells (100%) led to a fast decrease, which was not observed when HT29-B6 cells were co-cultured (10 and 20%). Concomitantly, anti-inflammatory effects were only observed using 100% Caco-2 cells, whereas mixtures of Caco-2 and HT29-B6 cells failed to induce an effect. ACN extract and M3G significantly attenuated TNF-α-stimulated low-grade leukocyte adhesion, expression of adhesion molecules E-selectin, VCAM-1 and ICAM-1 and cytokine expression and secretion (IL-8 and IL-6) as well as NF-κB mRNA expression. No effects were observed with high TNF-α (10 ng mL(-1)) or after short-term incubation (4 hours). CONCLUSIONS: ACNs in physiological concentrations reached the serosal compartment and reduced inflammation-related parameters, which were related to the initial steps during the pathogenesis of atherosclerosis.


Assuntos
Antocianinas/farmacologia , Técnicas de Cocultura/métodos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Inflamação/tratamento farmacológico , Vitis/química , Anti-Inflamatórios/farmacologia , Células CACO-2 , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Selectina E/genética , Selectina E/metabolismo , Células HT29 , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Intestinos/citologia , Intestinos/efeitos dos fármacos , NF-kappa B/genética , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Fator de Necrose Tumoral alfa/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
7.
Mol Neurobiol ; 46(1): 161-78, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22706880

RESUMO

The global trend of the phenomenon of population ageing has dramatic consequences on public health and the incidence of neurodegenerative diseases. Physiological changes that occur during normal ageing of the brain may exacerbate and initiate pathological processes that may lead to neurodegenerative disorders, especially Alzheimer's disease (AD). Hence, the risk of AD rises exponentially with age. While there is no cure currently available, sufficient intake of certain micronutrients and secondary plant metabolites may prevent disease onset. Polyphenols are highly abundant in the human diet, and several experimental and epidemiological evidences indicate that these secondary plant products have beneficial effects on AD risks. This study reviews current knowledge on the potential of polyphenols and selected polyphenol-rich diets on memory and cognition in human subjects, focusing on recent data showing in vivo efficacy of polyphenols in preventing neurodegenerative events during brain ageing and in dementia. Concentrations of polyphenols in animal brains following oral administration have been consistently reported to be very low, thus eliciting controversial discussion on their neuroprotective effects and potential mechanisms. Whether polyphenols exert any direct antioxidant effects in the brain or rather act by evoking alterations in regulatory systems of the brain or even the body periphery is still unclear. To understand the mechanisms behind the protective abilities of polyphenol-rich foods, an overall understanding of the biotransformation of polyphenols and identification of the various metabolites arising in the human body is also urgently needed.


Assuntos
Envelhecimento/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Encéfalo/patologia , Mitocôndrias/metabolismo , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Envelhecimento/patologia , Animais , Encéfalo/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Degeneração Neural/patologia , Polifenóis/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa