Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemphyschem ; 23(7): e202100659, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35092633

RESUMO

One major challenge of future sustainable photochemistry is to replace precious and rare transition metals in applications such as energy conversion or electroluminescence by earth-abundant, cheap, and recyclable materials. This involves using coordination complexes of first row transition metals such as Cu, Cr, or Mn. In the case of iron, which is attractive due to its natural abundance, fundamental limitations imposed by the small ligand field splitting energy have recently been overcome. In this review article, we briefly summarize the present knowledge and understanding of the structure-property relationships of Fe(II) and Fe(III) complexes with excited state lifetimes in the nanosecond range. However, our main focus is to examine to which extent the ultrafast spectroscopy methods used so far provided insight into the excited state structure and the photo-induced dynamics of these complexes. Driven by the main question of how to spectroscopically, i. e. in energy and concentration, differentiate the population of ligand- vs. metal-centered states, the hitherto less exploited ultrafast vibrational spectroscopy is suggested to provide valuable complementary insights.


Assuntos
Complexos de Coordenação , Compostos Férricos , Complexos de Coordenação/química , Compostos Ferrosos/química , Estrutura Molecular , Análise Espectral
2.
Phys Chem Chem Phys ; 22(27): 15496-15508, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32602504

RESUMO

An extensive theoretical characterization of the singlet excited state manifold of the five canonical DNA/RNA nucleobases (thymine, cytosine, uracil, adenine and guanine) in gas-phase is carried out with time-dependent density functional theory (TD-DFT) and restricted active space second-order perturbation theory (RASPT2) approaches. Both ground state and excited state absorptions are analyzed and compared between these different theoretical approaches, assessing the performance of the hybrid B3LYP and CAM-B3LYP (long-range corrected) functionals with respect to the RASPT2 reference. By comparing the TD-DFT estimates with our reference for high-lying excited states, we are able to narrow down specific energetic windows where TD-DFT may be safely employed to qualitatively reproduce the excited state absorption (ESA) signals registered in non-linear and time-resolved spectroscopy for monitoring photoinduced phenomena. Our results show a qualitative agreement between the RASPT2 reference and the B3LYP computed ESAs of pyrimidines in the near-IR/Visible spectral probing window while for purines the agreement is limited to the near-IR ESAs, with generally larger discrepancies obtained with the CAM-B3LYP functional. This outcome paves the way for appropriate application of cost-effective TD-DFT approaches to simulate linear and non-linear spectroscopies of realistic multichromophoric DNA/RNA systems with biological and nanotechnological relevance.


Assuntos
Adenina/química , Citosina/química , Teoria da Densidade Funcional , Guanina/química , Timina/química , Uracila/química , DNA/química , RNA/química
3.
J Phys Chem A ; 124(19): 3865-3875, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32285672

RESUMO

A broad series of quinoxalinone-based π-conjugated donor-acceptor fluoro- and NLO-phores is characterized by means of Raman spectroscopy and single-crystal X-ray analysis supported by quantum chemical computations. Intense Raman spectroscopic markers that allow the differentiation of even closely related structures are identified. The intensities of these bands are shown to be related to the conjugation of the different molecular moieties, and they can provide an estimation of its extent. The intensity redistribution between these markers serves as a source of auxiliary structural information capable of pointing to a distortion of the conjugation or to the influence of aggregation effects in the condensed state. A simple relation between the intensity of the marker and the position and oscillator strength of the lowest-energy electronic absorption band of quinoxalinones allows a linking of the Raman effect with the optical properties of these compounds, which can be used for the rational design of novel species with improved optical characteristics.

4.
J Comput Chem ; 40(29): 2530-2538, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31294857

RESUMO

Seven free base porphyrins employed in dye-sensitized photoelectrosynthetic cells are investigated with the aim of benchmarking the ability of different density functional theory (DFT) and time-dependent DFT approaches in reproducing their structure, vertical, and E0-0 excitation energies and the energy levels alignment (red-ox properties) at the interface with the TiO2 . We find that both vertical and E0-0 excitation energies are accurately reproduced by range-separated functionals, among which the ωB97X-D delivers the lowest absolute deviations from experiments. When the dye/TiO2 interface is modeled, the physical interfacial energetics is only obtained when the B3LYP functional is employed; on the other hand, M06-2X (54% of exchange) and the two long-range corrected approaches tested (CAM-B3LYP and ωB97X-D) excessively destabilize the semiconductor conduction band levels with respect to the dye's lowest unoccupied molecular orbitals (LUMOs), predicting no pathway for electron injection. © 2019 Wiley Periodicals, Inc.

5.
Inorg Chem ; 58(8): 5069-5081, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30950264

RESUMO

The control of photophysical properties of iron complexes and especially of their excited states decay is a great challenge in the search for sustainable alternatives to noble metals in photochemical applications. Herein we report the synthesis and investigations of the photophysics of mer and fac iron complexes bearing bidentate pyridyl-NHC ligands, coordinating the iron with three ligand-field-enhancing carbene bonds. Ultrafast transient absorption spectroscopy reveals two distinct excited state populations for both mer and fac forms, ascribed to the populations of the T1 and the T2 states, respectively, which decay to the ground state via parallel pathways. We find 3-4 ps and 15-20 ps excited-state lifetimes, with respective amplitudes depending on the isomer. The longer lifetime exceeds the one reported for iron complexes with tridentate ligands analogues involving four iron-carbene bonds. By combining experimental and computational results, a mechanism based on the differential trapping of the triplet states in spin-crossover regions is proposed for the first time to explain the impact of the fac/ mer isomerism on the overall excited-state lifetimes. Our results clearly highlight the impact of bidentate pyridyl-NHC ligands on the photophysics of iron complexes, especially the paramount role of fac/ mer isomerism in modulating the overall decay process, which can be potentially exploited in the design of new Fe(II)-based photoactive compounds.

6.
Photochem Photobiol Sci ; 17(3): 323-331, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29383356

RESUMO

Benzophenone (BP) despite its relatively simple molecular structure is a paradigmatic sensitizer, featuring both photocatalytic and photobiological effects due to its rather complex photophysical properties. In this contribution we report an original theoretical approach to model realistic, ultra-fast spectroscopy data, which requires describing intra- and intermolecular energy and structural relaxation. In particular we explicitly simulate time-resolved pump-probe spectra using a combination of state-of-the art hybrid quantum mechanics/molecular mechanics dynamics to treat relaxation and vibrational effects. The comparison with experimental transient absorption data demonstrates the efficiency and accuracy of our approach. Furthermore the explicit inclusion of the solvent, water for simulation and methanol for experiment, allows us, despite the inherent different behavior of the two, to underline the role played by the H-bonding relaxation in the first hundreds of femtoseconds after optical excitation. Finally we predict for the first time the two-dimensional electronic spectrum (2DES) of BP taking into account the vibrational effects and hence modelling partially symmetric and asymmetric ultrafast broadening.

7.
Inorg Chem ; 57(16): 10431-10441, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30063338

RESUMO

The synthesis and the steady-state absorption spectrum of a new pyridine-imidazolylidene Fe(II) complex (Fe-NHC) are presented. A detailed mechanism of the triplet metal-to-ligand charge-transfer states decay is provided on the basis of minimum energy path (MEP) calculations used to connect the lowest-lying singlet, triplet, and quintet state minima. The competition between the different decay pathways involved in the photoresponse is assessed by analyzing the shapes of the obtained potential energy surfaces. A qualitative difference between facial ( fac) and meridional ( mer) isomers' potential energy surface (PES) topologies is evidenced for the first time in iron-based complexes. Indeed, the mer complex shows a steeper triplet path toward the corresponding 3MC minimum, which lies at a lower energy as compared to the fac isomer, thus pointing to a faster triplet decay of the former. Furthermore, while a major role of the metal-centered quintet state population from the triplet 3MC region is excluded, we identify the enlargement of iron-nitrogen bonds as the main normal modes driving the excited-state decay.

8.
J Chem Phys ; 147(2): 024108, 2017 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-28711042

RESUMO

We report a theoretical study on the analysis of the relaxed one-particle difference density matrix characterizing the passage from the ground to the excited state of a molecular system, as obtained from time-dependent density functional theory. In particular, this work aims at using the physics contained in the so-called Z-vector, which differentiates between unrelaxed and relaxed difference density matrices to analyze excited states' nature. For this purpose, we introduce novel quantum-mechanical quantities, based on the detachment/attachment methodology, for analysing the Z-vector transformation for different molecules and density functional theory functionals. A derivation pathway of these novel descriptors is reported, involving a numerical integration to be performed in the Euclidean space on the density functions. This topological analysis is then applied to two sets of chromophores, and the correlation between the level of theory and the behavior of our descriptors is properly rationalized. In particular, the effect of range-separation on the relaxation amplitude is discussed. The relaxation term is finally shown to be system-specific (for a given level of theory) and independent of the number of electrons (i.e., the relaxation amplitude is not simply the result of a collective phenomenon).

9.
Phys Chem Chem Phys ; 18(18): 12550-6, 2016 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-27086578

RESUMO

Herein we report the synthesis and time-resolved spectroscopic characterization of a homoleptic Fe(ii) complex exhibiting a record (3)MLCT lifetime of 26 ps promoted by benzimidazolylidene-based ligands. Time dependent density functional molecular modeling of the triplet excited state manifold clearly reveals that, at equilibrium geometries, the lowest (3)MC state lies higher in energy than the lowest (3)MLCT one. This unprecedented energetic reversal in a series of iron complexes, with the stabilization of the charge-transfer state, opens up new perspectives towards iron-made excitonic and photonic devices, hampering the deactivation of the excitation via metal centered channels.

10.
Phys Chem Chem Phys ; 18(40): 28069-28081, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27711638

RESUMO

The first combined theoretical and photovoltaic characterization of both homoleptic and heteroleptic Fe(ii)-carbene sensitized photoanodes in working dye sensitized solar cells (DSSCs) has been performed. Three new heteroleptic Fe(ii)-NHC dye sensitizers have been synthesized, characterized and tested. Despite an improved interfacial charge separation in comparison to the homoleptic compounds, the heteroleptic complexes did not show boosted photovoltaic performances. The ab initio quantitative analysis of the interfacial electron and hole transfers and the measured photovoltaic data clearly evidenced fast recombination reactions for heteroleptics, even associated with un unfavorable directional electron flow, and hence slower injection rates, in the case of homoleptics. Notably, quantum mechanics calculations revealed that deprotonation of the not anchored carboxylic function in the homoleptic complex can effectively accelerate the electron injection rate and completely suppress the electron recombination to the oxidized dye. This result suggests that introduction of strong electron-donating substituents on the not-anchored carbene ligand in heteroleptic complexes, in such a way of mimicking the electronic effects of the carboxylate functionality, should yield markedly improved interfacial charge generation properties. The present results, providing for the first time a detailed understanding of the interfacial electron transfers and photovoltaic characterization in Fe(ii)-carbene sensitized solar cells, open the way to a rational molecular engineering of efficient iron-based dyes for photoelectrochemical applications.

11.
J Comput Chem ; 35(4): 313-23, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24403018

RESUMO

We further develop an idea to generate a compact multireference space without first solving the configuration interaction problem previously proposed for the ground state (GS) (Glushkov, Chem. Phys. Lett. 1995, 244, 1). In the present contribution, our attention is focused on low-lying excited states (ESs) with the same symmetry as the GS which can be adequately described in terms of an high-spin open-shell formalism. Two references Møller-Plesset (MP) like perturbation theory for ESs is developed. It is based on: (1) a main reference configuration constructed from the parent molecular orbitals adjusted to a given ES and (2) secondary double excitation configuration built on the GS like orbitals determined by the Hartree-Fock equations subject to some orthogonality constraints. It is shown how to modify the MP zeroth-order Hamiltonian so that the reference configurations and corresponding excitations are eigenfunctions of it and are compatible with orthogonality conditions for the GS and ES. Intruder states appearance is also discussed. The proposed scheme is applied to the GS, ES, and excitation energies of small molecules to illustrate and calibrate our calculations.

12.
J Comput Chem ; 35(15): 1131-9, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24752947

RESUMO

Experimental X-ray absorption spectra are extensively used to determine electronic structure of small molecules but remain difficult to exploit for proteins due to the large number of peaks within their spectra. For such complex systems, theoretical tools like quantum mechanics/molecular mechanics methodology can greatly ease the assignment of the spectra. This study presents a systematic methodology to evaluate core-ionization energies (E(ion)) in proteins with the help of the asymptotic projection approach (Glushkov and Tsaune, Z. Vichislit. Matem. Mat. Fiz. 1985, 25, 298; Glushkov, Chem. Phys. Lett. 1997, 273, 122; Glushkov, Chem. Phys. Lett. 1998, 287, 189; Glushkov, J. Math. Chem. 2002, 31, 91; Glushkov, Opt. Spectrosc. 2002, 93, 15). An in-depth inspection of E(ion) of systems of increasing complexity is considered, going from amino acids to polyglycine and to glycine in human serum albumin (HSA). Computational analysis can help to better understand experimental data and to discriminate environmental effects by tracing them back to individual and collective electrostatic contributions. In the present work, it was found that E(ion) of alpha carbon of glycine residues in HSA ranges from 285 to 295 eV depending on their surroundings.


Assuntos
Proteínas/química , Espectroscopia por Absorção de Raios X/métodos , Aminoácidos/química , Simulação por Computador , Íons , Modelos Químicos , Modelos Moleculares , Compostos Orgânicos , Conformação Proteica
13.
Acc Chem Res ; 46(2): 596-603, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23249409

RESUMO

Molecular mechanics methods can efficiently compute the macroscopic properties of a large molecular system but cannot represent the electronic changes that occur during a chemical reaction or an electronic transition. Quantum mechanical methods can accurately simulate these processes, but they require considerably greater computational resources. Because electronic changes typically occur in a limited part of the system, such as the solute in a molecular solution or the substrate within the active site of enzymatic reactions, researchers can limit the quantum computation to this part of the system. Researchers take into account the influence of the surroundings by embedding this quantum computation into a calculation of the whole system described at the molecular mechanical level, a strategy known as the mixed quantum mechanics/molecular mechanics (QM/MM) approach. The accuracy of this embedding varies according to the types of interactions included, whether they are purely mechanical or classically electrostatic. This embedding can also introduce the induced polarization of the surroundings. The difficulty in QM/MM calculations comes from the splitting of the system into two parts, which requires severing the chemical bonds that link the quantum mechanical subsystem to the classical subsystem. Typically, researchers replace the quantoclassical atoms, those at the boundary between the subsystems, with a monovalent link atom. For example, researchers might add a hydrogen atom when a C-C bond is cut. This Account describes another approach, the Local Self Consistent Field (LSCF), which was developed in our laboratory. LSCF links the quantum mechanical portion of the molecule to the classical portion using a strictly localized bond orbital extracted from a small model molecule for each bond. In this scenario, the quantoclassical atom has an apparent nuclear charge of +1. To achieve correct bond lengths and force constants, we must take into account the inner shell of the atom: for an sp(3) carbon atom, we consider the two core 1s electrons and treat that carbon as an atom with three electrons. This results in an LSCF+3 model. Similarly, a nitrogen atom with a lone pair of electrons available for conjugation is treated as an atom with five electrons (LSCF+5). This approach is particularly well suited to splitting peptide bonds and other bonds that include carbon or nitrogen atoms. To embed the induced polarization within the calculation, researchers must use a polarizable force field. However, because the parameters of the usual force fields include an average of the induction effects, researchers typically can obtain satisfactory results without explicitly introducing the polarization. When considering electronic transitions, researchers must take into account the changes in the electronic polarization. One approach is to simulate the electronic cloud of the surroundings by a continuum whose dielectric constant is equal to the square of the refractive index. This Electronic Response of the Surroundings (ERS) methodology allows researchers to model the changes in induced polarization easily. We illustrate this approach by modeling the electronic absorption of tryptophan in human serum albumin (HSA).


Assuntos
Simulação de Dinâmica Molecular , Proteínas/química , Triptofano/química , Motivos de Aminoácidos
14.
Chemistry ; 20(40): 12901-9, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25145959

RESUMO

The environmental effects on the structural and photophysical properties of [Ru(L)2 (dppz)](2+) complexes (L=bpy=2,2'-bipyridine, phen=1,10-phenanthroline, tap=1,4,5,8-tetraazaphenanthrene; dppz=dipyrido[3,3-a:2',3'-c]phenazine), used as DNA intercalators, have been studied by means of DFT, time-dependent DFT, and quantum mechanics/molecular mechanics calculations. The electronic characteristics of the low-lying triplet excited states in water, acetonitrile, and DNA have been investigated to decipher the influence of the environment on the luminescent behavior of this class of molecules. The lowest triplet intra-ligand (IL) excited state calculated at λ≈800 nm for the three complexes and localized on the dppz ligand is not very sensitive to the environment and is available for electron transfer from a guanine nucleobase. Whereas the lowest triplet metal-to-ligand charge-transfer ((3)MLCT) states remain localized on the ancillary ligand (tap) in [Ru(tap)2 (dppz)](2+), regardless of the environment, their character is drastically modified in the other complexes [Ru(phen)2 (dppz)](2+) and [Ru(bpy)2 (dppz)](2+) upon going from acetonitrile (MLCTdppz/phen or MLCTdppz/bpy) to water (MLCTdppz) and DNA (MLCTphen and MLCTbpy). The change in the character of the low-lying (3) MLCT states accompanying nuclear relaxation in the excited state controls the emissive properties of the complexes in water, acetonitrile, and DNA. The light-switching effect has been rationalized on the basis of environment-induced control of the electronic density distributed in the lowest triplet excited states.


Assuntos
2,2'-Dipiridil/química , DNA/química , Substâncias Intercalantes/química , Compostos Organometálicos/química , Fenantrenos/química , Fenantrolinas/química , Fenazinas/química , Rutênio/química , 2,2'-Dipiridil/farmacologia , Substâncias Intercalantes/farmacologia , Luminescência , Modelos Moleculares , Compostos Organometálicos/farmacologia , Fenantrenos/farmacologia , Fenantrolinas/farmacologia , Fenazinas/farmacologia , Rutênio/farmacologia
15.
J Mol Model ; 30(6): 180, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780881

RESUMO

CONTEXT: In cellular environments, the reduction of disulfide bonds is pivotal for protein folding and synthesis. However, the intricate enzymatic mechanisms governing this process remain poorly understood. This study addresses this gap by investigating a disulfide bridge reduction reaction, serving as a model for comprehending electron and proton transfer in biological systems. Six potential mechanisms for reducing the dimethyl disulfide (DMDS) bridge through electron and proton capture were explored. Thermodynamic and kinetic analyses elucidated the sequence of proton and electron addition. MD-PMM, a method that combines molecular dynamics simulations and quantum-chemical calculations, was employed to compute the redox potential of the mechanism. This research provides valuable insights into the mechanisms and redox potentials involved in disulfide bridge reduction within proteins, offering an understanding of phenomena that are challenging to explore experimentally. METHODS: All calculations used the Gaussian 09 software package at the MP2/6-311 + g(d,p) theory level. Visualization of the molecular orbitals and electron densities was conducted using Gaussview6. Molecular dynamics simulations were performed using GROMACS with the CHARMM36 force field. The PyMM program (Python Program for QM/MM Simulations Based on the Perturbed Matrix Method) is used to apply the Perturbed Matrix Method to MD simulations.

16.
Phys Chem Chem Phys ; 14(36): 12496-504, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22700035

RESUMO

The UV/Visible absorption properties of a polypyridyl ruthenium complex upon intercalation on DNA are studied at the mixed quantum mechanics molecular mechanics level of theory. Vertical excitation transitions are computed by time dependent density functional theory. Particular emphasis is put on the different levels at which the macromolecular environment is treated, and in particular on the analysis of the effect of mechanical, electrostatic and polarizable embedding. We show that with the highest level of theory the experimental absorption wavelengths are reproduced with a difference of only 2 or 3 nm for the low energy bands. The systematic analysis of the individual vertical transitions allows us to get much more insights into the role played by the environment, in particular, in metal to ligand and intra ligand charge transfer transitions that can lead to the production of DNA oxidative lesions exploitable in phototherapy.


Assuntos
DNA/química , Compostos Organometálicos/química , Fenazinas/química , Teoria Quântica , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Fenazinas/síntese química , Espectrofotometria Ultravioleta
17.
J Phys Chem A ; 116(48): 11905-12, 2012 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-23157650

RESUMO

We report the time-dependent density functional theory study of the absorption spectrum of an iron complex exhibiting photoisomerization properties. The role of the exchange-correlation functionals and, in particular, the effects of the inclusion of long-range corrections have been considered. The vertical transitions have been analyzed in terms of natural transition orbitals and have shown that the spectrum is dominated by ligand-to-metal charge-transfer transitions, an occurrence that could be promising for future applications of these complexes.

18.
J Phys Chem A ; 116(44): 10736-44, 2012 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-23088305

RESUMO

The properties of the ground and excited states of several porphyrins appended with external chelates coordinated to ruthenium-bisbipyridine units are reported. The important modification of the absorption spectrum upon coordination with the ruthenium complex showed that a significant electronic communication between the two subunits was present in the ground state. Experimental results were compared with quantum chemistry calculations performed at density functional theory and time-dependent density functional theory level. The influence of the exchange-correlation functional on the quality of the computed absorption spectrum is shown, and the better behavior of hybrid functionals over long-range corrected ones was rationalized. The excited states topology analysis, performed using natural transition orbitals, gave a more evident confirmation of the communication between the subunits and showed that these new compounds can be promising as dyes in dye-sensitized solar cells.

19.
Chemphyschem ; 12(6): 1135-42, 2011 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-21472965

RESUMO

Natural polyphenols are known to be oxidized by free radicals, which partially explains the antioxidant properties of a number of these compounds. This oxidation may also be used to synthesise new compounds of biological interest, for example, dimers. The present theoretical study describes the existing experimental evidence showing that silybin and dehydrosilybin [natural polyphenols isolated from milk thistle (Silybum marianum)] form dimers regioselectively. Based on DFT calculations, thermodynamic and kinetic values were computed in order to better understand the physicochemical behaviour of these dimerisation processes. Calculations showed that after H-atom transfer (from polyphenol to radical), dimerisation could proceed in two steps: 1) bond formation and, when possible, 2) tautomerisation reorganisation. The former step is the limiting step, while the latter is crucial for the process to be thermodynamically favourable (ΔG<0). If this rearrangement is impossible then dimerisation is not feasible, or at least becomes a minor process (e.g., dehydrosilybin dimerisation after H-atom abstraction from the 3-OH group). This explains the regioselectivity of polyphenol dimerisation.


Assuntos
Flavonolignanos/química , Silimarina/química , Dimerização , Cinética , Oxirredução , Polifenóis/química , Silibina , Estereoisomerismo , Termodinâmica
20.
J Phys Chem A ; 115(15): 3596-603, 2011 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-21428400

RESUMO

Two relevant, recently reported, ruthenium-based complexes to be used as sensitizers in Grätzel photovoltaic cells are theoretically studied. The UV/vis absorption spectra have been computed within the time-dependent density functional theory formalism. The obtained excitation energies are compared with the experimental results, and the nature of the transition is analyzed in terms of the electronic density. A preliminary study on the performance of different functionals against the equation of motion coupled cluster is performed on a smaller model system.


Assuntos
Corantes Fluorescentes/química , Compostos Organometálicos/química , Teoria Quântica , Rutênio/química , Energia Solar , Estrutura Molecular , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa