Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Toxicol ; 37(7): 873-883, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28138972

RESUMO

Quassinoids often exhibit antioxidant and antiproliferative activity. Emerging evidence suggests that these natural metabolites also display chemopreventive actions. In this study, we investigated the potential for the quassinoid glaucarubulone glucoside (Gg), isolated from the endemic Jamaican plant Castela macrophylla (Simaroubaceae), to display potent cytotoxicity and inhibit human cytochrome P450s (CYPs), particularly CYP1A enzymes, known to convert polyaromatic hydrocarbons into carcinogenic metabolites. Gg reduced the viability of MCF-7 breast adenocarcinoma cells (IC50 = 121 nm) to a greater extent than standard of care anticancer agents 5-fluorouracil, tamoxifen (IC50 >10 µm) and the tamoxifen metabolite 4-hydroxytamoxifen (IC50 = 2.6 µm), yet was not cytotoxic to non-tumorigenic MCF-10A breast epithelial cells. Additionally, Gg induced MCF-7 breast cancer cell death. Gg blocked increases in reactive oxygen species in MCF-10A cells mediated by the polyaromatic hydrocarbon benzo[a]pyrene (B[a]P) metabolite B[a]P 1,6-quinone, yet downregulated the expression of genes that promote antioxidant activity in MCF-7 cells. This implies that Gg exhibits antioxidant and cytoprotective actions in non-tumorigenic breast epithelial cells and pro-oxidant, cytotoxic actions in breast cancer cells. Furthermore, Gg inhibited the activities of human CYP1A according to non-competitive kinetics and attenuated the ability of B[a]P to induce CYP1A gene expression in MCF-7 cells. These data indicate that Gg selectively suppresses MCF-7 breast cancer cell growth without impacting non-tumorigenic breast epithelial cells and blocks B[a]P-mediated CYP1A induction. Taken together, our data provide a rationale for further investigations of Gg and similar plant isolates as potential agents to treat and prevent breast cancer. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Citotoxinas/uso terapêutico , Glaucarubina/análogos & derivados , Extratos Vegetais/uso terapêutico , Simaroubaceae/química , Antioxidantes/uso terapêutico , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Feminino , Expressão Gênica/efeitos dos fármacos , Glaucarubina/uso terapêutico , Humanos , Jamaica , Células MCF-7/efeitos dos fármacos , Quassinas/uso terapêutico
2.
Onco Targets Ther ; 8: 495-507, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25767396

RESUMO

New agent development, mechanistic understanding, and combinatorial partnerships with known and novel modalities continue to be important in the study of pancreatic cancer and its improved treatment. In this study, known antimetabolite drugs such as gemcitabine (ribonucleotide reductase inhibitor) and 5-fluorouracil (thymidylate synthase inhibitor) were compared with novel members of these two drug families in the treatment of a chemoresistant pancreatic cancer cell line PANC-1. Cellular survival data, along with protein and messenger ribonucleic acid expression for survivin, XIAP, cIAP1, and cIAP2, were compared from both the cell cytoplasm and from exosomes after single modality treatment. While all antimetabolite drugs killed PANC-1 cells in a time- and dose-dependent manner, neither family significantly altered the cytosolic protein level of the four inhibitors of apoptosis (IAPs) investigated. Survivin, XIAP, cIAP1, and cIAP2 were found localized to exosomes where no significant difference in expression was recorded. This inability for significant and long-lasting expression may be a reason why pancreatic cancer lacks responsiveness to these and other cancer-killing agents. Continued investigation is required to determine the responsibilities of these IAPs in their role in chemoresistance in pancreatic adenocarcinoma.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa