Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mediators Inflamm ; 2024: 8233689, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39026629

RESUMO

Dorstenia psilurus is a widely used plant spice in traditional African medicine to treat pain-related conditions. However, the anti-inflammatory mechanisms underlying this activity and the main active ingredients of D. psilurus have not yet been fully characterized. This study aimed to isolate and identify the main active anti-inflammatory constituents of the D. psilurus extract and to investigate the underlying anti-inflammatory mechanisms in murine macrophages. Chromatographic techniques and spectroscopic data were used for compound isolation and structure elucidation. The Griess reagent method and the ferrous oxidation-xylenol orange assay were used to evaluate the inhibition of NO production and 15-lipoxygenase activity, respectively. Cyclooxygenase activity was assessed using the fluorometric COX activity assay kit, and Th1/Th2 cytokine measurement was performed using a flow cytometer. The results indicated that the extract and fractions of D. psilurus inhibit NO production and proliferation of RAW 264.7 macrophage cells. Bioguided fractionation led to the identification of psoralen, a furocoumarin, as the main bioactive anti-inflammatory compound. Psoralen inhibited NO production and 15-lipoxygenase activity and reduced pro-inflammatory Th1 cytokines (IFN-γ, TNF-α, and IL-2) while increasing the secretion of anti-inflammatory cytokines (IL-4, IL-6, and IL-10) in activated RAW 264.7 macrophage cells. The encouraging results obtained in this study suggest that psoralen-based multiple modulation strategies could be a useful approach to address the treatment of inflammatory diseases.


Assuntos
Citocinas , Ficusina , Lipopolissacarídeos , Macrófagos , Raízes de Plantas , Animais , Camundongos , Células RAW 264.7 , Citocinas/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Raízes de Plantas/química , Lipopolissacarídeos/farmacologia , Ficusina/farmacologia , Ficusina/química , Células Th1/efeitos dos fármacos , Células Th1/metabolismo , Células Th2/metabolismo , Células Th2/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Óxido Nítrico/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química
2.
Nat Prod Res ; 37(23): 3935-3946, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36584290

RESUMO

The CH2Cl2-MeOH (1:1) extract of roots of Rumex nepalensis (Polygonaceae) displayed significant antibacterial activity against five bacterial strains with MICs (62.5-31.2 µg.mL-1). The EtOAc soluble fraction displayed a significant activity against the same strains with MICs (31.2-3.9 µg.mL-1). The purification of the EtOAc fraction yielded one new phenylisobenzofuranone derivative, berquaertiide (1), along with 19 known compounds (2-20). Their structures were elucidated based on the analysis of their NMR and MS data. All the isolated compounds were assessed for their antibacterial activity. Compound 2 was the most active against all the tested strains (15.7 to 1.9 µg.mL-1), while compounds 3-7 displayed good activities on at least one of the tested strains. In addition, seven analogues (21-27) of compound 2 were prepared and further assessed for their antibacterial activity. Compounds 26 and 27 were most active than 2 against Salmonella enterica and Klebsiella pneumoniae with MIC (125 and 15.6 µg.mL-1, respectively).


Assuntos
Emodina , Rumex , Emodina/farmacologia , Extratos Vegetais/química , Rumex/química , Bactérias , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa