Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Connect Tissue Res ; 60(4): 323-334, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30277081

RESUMO

Purpose: Our previous studies indicate that phorbol 12-myristate 13-acetate (PMA)-treated U937 cells cultured on collagen I-coated dishes express lowered production of pro-inflammatory mediators in parallel through reduced reactive oxygen species (ROS) levels. By contrast, PMA-treated U937 cells on gelatin, the denatured collagen, show enhanced production of pro-inflammatory mediators, mediated by up-regulating autophagy levels. The present study is aimed to investigate the effect of ROS levels in PMA-treated U937 cells cultured on gelatin-coated surface. Material and methods: MTT assay, flow cytometric analysis of ROS and autophagy, biochemical detection of antioxidant levels, enzyme-linked immunosorbent assay, and western blot were used. Results: Gelatin-coating increased ROS levels in PMA-treated U937 cells. Increased ROS levels are involved in the regulation of cell aggregation and the release of pro-inflammatory mediators in gelatin-coated culture. These results lead to the query about the crosstalk between the two positive regulators, the autophagy and ROS. Autophagy induction is attenuated by N-acetyl-L-cysteine treatment, but the treatment with autophagy inhibitor, 3-methyladenine, does not affect ROS levels, suggesting ROS are upstream of autophagy in the regulation axis of differentiated U937 cells on gelatin-coated surface. Further study confirmed that upregulation of autophagy was responsible for ROS-induced cell aggregation and production of pro-inflammatory mediators. Conclusion: The results suggest that gelatin-coating promotes the aggregation of PMA-treated U937 cells and the production of pro-inflammatory mediators by ROS-autophagy signaling pathway.


Assuntos
Autofagia/efeitos dos fármacos , Gelatina/química , Mediadores da Inflamação/metabolismo , Ésteres de Forbol/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima/efeitos dos fármacos , Animais , Agregação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Dinoprostona/metabolismo , Humanos , Interleucina-1beta/metabolismo , Modelos Biológicos , Transdução de Sinais/efeitos dos fármacos , Suínos , Fator de Necrose Tumoral alfa/metabolismo , Células U937
2.
Biochimie ; 150: 110-130, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29777737

RESUMO

In organ fibrosis, mechanical stress and transforming growth factor beta-1 (TGF-ß1) promote differentiation into myofibroblast from mesenchymal cells, leading to extracellular matrix (ECM) remodeling or active synthesis, deposition or degradation of ECM components. A major component of ECM, type I collagen (col I) triple helical molecules assemble into fibrils or are denatured to gelatin without triple-helicity in remodeling. However, whether changes of ECM components in remodeling have influence on mesenchymal cell differentiation remains elusive. This study adopted three states of collagen I existing in ECM remodeling: molecular collagen, fibrillar collagen and gelatin to see what are characteristics in the effects on two cell lines of mesenchymal origin, murine 3T3-L1 embryonic fibroblast and murine C2C12 myoblasts. The results showed that all three forms of collagen I were capable of inducing these two cells to differentiate into myofibroblasts characterized by increased expression of alpha-smooth muscle actin (α-SMA) mRNA. The expression of α-SMA is positively regulated by TGF-ß1. Nuclear translocation of Yes-associated protein (YAP) is involved in this process. Focal adhesion kinase (FAK) is activated in the cells cultured on molecular collagen-coated plates, contributing to YAP activation. On the other hand, in the cells cultured on fibrillar collagen gel or gelatin-coated plates, oxidative stress but not FAK induce YAP activation. In conclusion, the three physicochemically distinct forms of col I induce the differentiation of mesenchymal cells into myofibroblasts through different pathways.


Assuntos
Diferenciação Celular/fisiologia , Colágeno Tipo I/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Células 3T3-L1 , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Western Blotting , Proteínas de Ciclo Celular , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células/genética , Proliferação de Células/fisiologia , Colágeno Tipo I/genética , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Camundongos , Microscopia Confocal , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fator de Crescimento Transformador beta1/genética , Proteínas de Sinalização YAP
3.
Int J Biochem Cell Biol ; 95: 132-142, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29307663

RESUMO

Gelatin, denatured collagen, temporarily exists in tissues and may well be pathophysiologically involved in tissue remodeling, inflammation or tissue damage. The present study is aimed to investigate possible biological roles of gelatin by examining its effects on monocyte-like histiocytic lymphoma cell line U937. Once stimulated by phorbol 12-myristate 13-acetate (PMA), U937 cells differentiate into macrophage-like cells, changing from non-adherent to adherent cells with extended pseudopodia. Here we pre-treated the cell dishes with gelatin solution for cell culture. Interestingly, we found that PMA-stimulated U937 cells formed multicellular aggregates on gelatin-coated dishes, accompanying NF-κB-mediated production of pro-inflammatory cytokines, whereas cell aggregation was not detected on non-coated dishes. Moreover, differentiated U937 cells on gelatin-coated dishes showed increased autophagy level and endocytosis. Surprisingly, formation of multicellular aggregates and pro-inflammatory cytokine production were both attenuated by either down-regulation of autophagy with inhibitors, such as 3-methyladenine (3MA) or chloroquine (CQ), or repression of endocytosis with siRNA targeting Endo180. Moreover, autophagy was inhibited by si-Endo180, and endocytosis was suppressed by 3MA, suggesting a positive feedback loop between autophagy and endocytosis. The results revealed that gelatin-coating induced differentiated U937 cells to form cell aggregates and promote NF-κB-mediated pro-inflammatory cytokine production at least partially through an endocytosis-autophagy pathway.


Assuntos
Autofagia/efeitos dos fármacos , Citocinas/metabolismo , Endocitose/efeitos dos fármacos , Matriz Extracelular/metabolismo , Gelatina/metabolismo , Macrófagos/efeitos dos fármacos , Acetato de Tetradecanoilforbol/análogos & derivados , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Proteína Beclina-1/antagonistas & inibidores , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Carcinógenos/farmacologia , Agregação Celular , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cloroquina/farmacologia , Gelatina/isolamento & purificação , Humanos , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Lectinas de Ligação a Manose/antagonistas & inibidores , Lectinas de Ligação a Manose/genética , Lectinas de Ligação a Manose/metabolismo , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/metabolismo , Pseudópodes/efeitos dos fármacos , Pseudópodes/imunologia , Pseudópodes/metabolismo , Interferência de RNA , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Pele/química , Sus scrofa , Acetato de Tetradecanoilforbol/farmacologia
4.
Dent Mater J ; 33(5): 674-80, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25273048

RESUMO

The purpose of this study was to evaluate a thin gelatin hydrogel membrane containing ß-tricalcium phosphate (G-TCP) for use in guided bone regeneration, a technique that we developed. G-TCP membranes were fabricated from gelatin and ß-TCP powder, freezedried, and cross-linked by heating. The resulting G-TCP membranes were as thin as collagen membranes, with high mechanical integrity. Proliferation and differentiation of rat bone marrow stromal cells (BMSCs) on G-TCP and collagen membranes were examined. On both membranes, BMSCs proliferated well and expressed alkaline phosphatase. However, more bone-like mineralized tissue formed on G-TCP membranes than on collagen membranes at 4 weeks. The effects of G-TCP and collagen membranes on bone regeneration in rat parietal bone defects were histologically examined. Bone bridges with mature uniform bone were observed under G-TCP membranes as early as 2 weeks. These results indicate that G-TCP is a GBR membrane that is comparable or superior to collagen membrane.


Assuntos
Desenvolvimento Ósseo , Regeneração Óssea , Fosfatos de Cálcio/química , Gelatina/química , Hidrogéis , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa