RESUMO
The oxidation process of samariumoxysulfide was studied in the temperature range of 500-1000 °C. Our DTA investigation allowed for establishing the main thermodynamic (∆Hºexp = -654.6 kJ/mol) and kinetic characteristics of the process (Ea = 244 kJ/mol, A = 2 × 1010). The enthalpy value of samarium oxysulfate (ΔHºf (Sm2O2SO4(monocl)) = -2294.0 kJ/mol) formation was calculated. The calculated process enthalpy value coincides with the value determined in the experiment. It was established that samarium oxysulfate crystallizes in the monoclinic symmetry class and its crystal structure belongs to space group C2/c with unit cell parameters a = 13.7442 (2), b = 4.20178 (4) and c = 8.16711 (8)Å, ß = 107.224 (1)°, V = 450.498 (9)Å3, Z = 4. The main elements of the crystalline structure are obtained and the cation coordination environment is analyzed in detail. Vibrational spectroscopy methods confirmed the structural model adequacy. The Sm2O2SO4luminescence spectra exhibit three main bands easily assignable to the transitions from 4G5/2 state to 6H5/2, 6H7/2, and 6H9/2 multiplets.
Assuntos
Samário/química , Luminescência , Oxirredução , Temperatura , TermodinâmicaRESUMO
Optical quality GaSe crystals have been grown by vertical Bridgman method. The structural properties and micromorphology of a cleaved GaSe(001) surface have been evaluated by RHEED, SEM and AFM. The cleaved GaSe(001) is atomically flat with as low roughness as â¼0.06 nm excepting local hillock type defects. The hillock-type formations are round-shaped with a bottom diameter of â¼200 nm and a height of â¼20-35 nm. The drastic depletion of the hillock material by gallium has been indicated by EDX measurements.
RESUMO
The LiGaTe2 crystals up to 5 mm in size were grown by the modified Bridgman-Stockbarger technique and the cell parameter dependence on temperature in the range of 303-563 K was evaluated by the X-ray diffraction analysis. The thermal behavior of LiGaTe2 is evidently anisotropic and a negative thermal expansion is found along crystallographic direction c with coefficient -8.6 × 10-6. However, the normal thermal expansion in two a directions with coefficient 19.1 × 10-6 is dominant providing unit cell volume increase on heating. The atomic mechanism is proposed to describe this pronounced anisotropic expansion effect. The electronic structure of LiGaTe2 is measured by X-ray photoelectron spectroscopy and the band structure is obtained by DFT calculations. The pressure response from 0 to 5 GPa was calculated and a normal crystal compression is found. This work indicates that LiGaTe2 is promising as an IR NLO or window material for many practical applications because the thermal expansion coefficients of this telluride are not big. We believe that these results would be beneficial for the discovery and exploration of new IR optoelectronic polyfunctional metal tellurides.
RESUMO
The use of the high free-electron concentration in heavily doped semiconductor enables the realization of plasmons. We report a novel approach to generate plasmons in Ga:ZnO (GZO) thin films in the wide spectral range of â¼1.87-10.04 eV. In the grown GZO thin films, dual-ion beam sputtering (DIBS) instigated plasmon is observed because of the formation of different metallic nanoclusters are reported. Moreover, formation of the nanoclusters and generation of plasmons are verified by field emission scanning electron microscope, electron energy loss spectra obtained by ultraviolet photoelectron spectroscopy, and spectroscopic ellipsometry analysis. Moreover, the calculation of valence bulk, valence surface, and particle plasmon resonance energies are performed, and indexing of each plasmon peaks with corresponding plasmon energy peak of the different nanoclusters is carried out. Further, the use of DIBS-instigated plasmon-enhanced GZO can be a novel mean to improve the performance of photovoltaic, photodetector, and sensing devices.
RESUMO
Microcrystals of orthorhombic rubidium samarium molybdate, ß-RbSm(MoO4)2, have been fabricated by solid state synthesis at T = 450 °C, 70 h, and at T = 600 °C, 150 h. The crystal structure has been refined by the Rietveld method in space group Pbcn with cell parameters a = 5.0984(2), b = 18.9742(6) and c = 8.0449(3) Å (R(B) = 1.72%). Thermal properties of ß-RbSm(MoO4)2 were traced by DSC over the temperature range of T = 20-965 °C, and the earlier reported ß â α phase transition at T â¼ 860-910 °C was not verified. The electronic structure of ß-RbSm(MoO4)2 was studied by employing theoretical calculations and X-ray photoelectron spectroscopy. It has been established that the O 2p-like states contribute mainly to the upper part of the valence band and occupy the valence band maximum, whereas the Mo 4d-like states contribute mainly to the lower part of the valence band. Chemical bonding effects have been analysed from the element core level binding energy data. In addition, it was found that the luminescence spectrum of ß-RbSm(MoO4)2 is rather peculiar among the Sm(3+) containing materials. The optical refractive index dispersion in ß-RbSm(MoO4)2 was also predicted by the first-principles calculations.
RESUMO
The investigation of valence band structure and electronic parameters of constituent element core levels of α-SrB(4)O(7) has been carried out with x-ray photoemission spectroscopy. Optical-quality crystal α-SrB(4)O(7) has been grown by the Czochralski method. Detailed photoemission spectra of the element core levels have been recorded from the powder sample under excitation by nonmonochromatic Al Kα radiation (1486.6 eV). The band structure of α-SrB(4)O(7) has been calculated by ab initio methods and compared to XPS measurements. It has been found that the band structure of α-SrB(4)O(7) is weakly dependent on the Sr-related states.
Assuntos
Bismuto/química , Eletrônica , Óxidos/química , Estrôncio/química , Simulação por Computador , Condutividade Elétrica , Modelos Químicos , Estrutura Molecular , Espectroscopia FotoeletrônicaRESUMO
The electronic structure of RbTiOPO(4) has been investigated with x-ray photoemission spectroscopy. Detailed photoemission spectra of the element core levels have been recorded under excitation by nonmonochromatic Al Kα radiation (1486.6 eV). The chemical bonding parameters are compared to those reported for complex titanates and phosphates. The band structures of KTiOPO(4), RbTiOPO(4), K(0.535)R(0.465)TiOPO(4) and TlTiOPO(4) have been calculated by ab initio methods and compared to available experimental results. It is found that the band structure of KTP-type phosphate crystals is weakly dependent on the nature of the A-site (A=K, Rb, Tl) element.
Assuntos
Modelos Químicos , Modelos Moleculares , Fosfatos/química , Rubídio/química , Titânio/química , Cátions , Simulação por Computador , Condutividade Elétrica , Teste de MateriaisRESUMO
The La(2)O(3)/Si thin films have been deposited by reactive DC magnetron sputtering. Amorphous state of La(2)O(3) layer has been shown by RHEED observation. Top surface chemistry of the a-La(2)O(3) has been evaluated with layer-by-layer depth profiling by ion bombardment and XPS measurements. It was found by core level spectroscopy that the top surface of the a-La(2)O(3) film consists of hydrocarbon admixture, lanthanum carbonate, and hydroxides that formed as a result of contact with air atmosphere. Thickness of this top surface modified layer is below 1 nm for a contact time of ~1.5 h with air at normal conditions.
RESUMO
Electronic and optical properties of lithium thiogallate crystal, LiGaS(2), have been investigated by both experimental and theoretical methods. The plane-wave pseudopotential method based on DFT theory has been used for band structure calculations. The electronic parameters of Ga 3d orbitals have been corrected by the DFT+U methods to be consistent with those measured with x-ray photoemission spectroscopy. Evolution of optical constants of LiGaS(2) over a wide spectral range was determined by developed first-principles theory and dispersion curves were compared with optical parameters defined by spectroscopic ellipsometry in the photon energy range 1.2-5.0 eV. Good agreement has been achieved between theoretical and experimental results.
RESUMO
The phase correction of a vortex laser beam is undertaken in the closed-loop adaptive system including a Hartmann-Shack wavefront sensor with singular reconstruction technique and a bimorph piezoceramic mirror. After correction the vortex doughnutlike beam is focused into a beam with bright axial spot that considerably increases the Strehl ratio and optical system resolution. Since the phase break cannot be exactly reproduced on the flexible mirror surface, off-axis vortices appear in the far field at the beam periphery.
RESUMO
Reconstruction the phase front of a vortex laser beam is conducted by use of a Hartmann-Shack wavefront sensor. The vortex beam in the form of the Laguerre-Gaussian LG(0)(1) mode is generated with the help of a spiral phase plate. The new reconstruction technique based on measured wavefront gradients allows one to restore the singular phase surface with good accuracy, whereas the conventional least-squares approach fails.