Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
BMC Microbiol ; 22(1): 132, 2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-35568809

RESUMO

BACKGROUND: Microbiota play important roles in the gastrointestinal tract (GIT) of dairy cattle as the communities are responsible for host health, growth, and production performance. However, a systematic characterization and comparison of microbial communities in the GIT of cattle housed in different management units on a modern dairy farm are still lacking. We used 16S rRNA gene sequencing to evaluate the fecal bacterial communities of 90 dairy cattle housed in 12 distinctly defined management units on a modern dairy farm. RESULTS: We found that cattle from management units 5, 6, 8, and 9 had similar bacterial communities while the other units showed varying levels of differences. Hutch calves had a dramatically different bacterial community than adult cattle, with at least 10 genera exclusively detected in their samples but not in non-neonatal cattle. Moreover, we compared fecal bacteria of cattle from every pair of the management units and detailed the number and relative abundance of the significantly differential genera. Lastly, we identified 181 pairs of strongly correlated taxa in the community, showing possible synergistic or antagonistic relationships. CONCLUSIONS: This study assesses the fecal microbiota of cattle from 12 distinctly defined management units along the production line on a California dairy farm. The results highlight the similarities and differences of fecal microbiota between cattle from each pair of the management units. Especially, the data indicate that the newborn calves host very different gut bacterial communities than non-neonatal cattle, while non-neonatal cattle adopt one of the two distinct types of gut bacterial communities with subtle differences among the management units. The gut microbial communities of dairy cattle change dramatically in bacterial abundances at different taxonomic levels along the production line. The findings provide a reference for research and practice in modern dairy farm management.


Assuntos
Microbiota , Animais , Bactérias/genética , Bovinos , Fezes/microbiologia , Trato Gastrointestinal/microbiologia , RNA Ribossômico 16S/genética
2.
Am J Primatol ; 82(1): e23086, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31876328

RESUMO

Social status impacts stress in primates, but the direction of the effect differs depending on species, social style, and group stability. This complicates our ability to identify broadly applicable principles for understanding how social status impacts health and fitness. One reason for this is the fact that social status is often measured as linear dominance rank, yet social status is more complex than simply high or low rank. Additionally, most research on social status and health ignores the effects of sex and sex-specific relationships, despite known differences in disease risk, coping strategies, and opposite-sex dominance interactions between males and females in many species. We examine the influence of social status, sex, and opposite-sex interactions on hair cortisol concentrations (HCC) in a well-studied species, rhesus macaques, where the literature predicts low ranking individuals would experience more chronic stress. Animals in three captive, seminaturalistic social groups (N = 252; 71 male) were observed for 6 weeks to obtain metrics of social status (rank and dominance certainty [DC]). DC is a measure of one's fit within the hierarchy. Hair samples were collected from each subject and analyzed for HCC. Generalized linear mixed models were used to examine (a) whether rank, DC, or sex predicted HCC; (b) whether same- or opposite-sex dominance relationships differentially impacted HCC; and (c) whether aggressive interactions initiated or received could explain any observed relationships. Results indicated that DC, not rank, predicted HCC in a sex-specific manner. For males, high HCC were predicted by receiving aggression from or having high DC with other males as well as having low DC with females. For females, only high DC with males predicted high HCC. These results likely relate to sex-specific life history pattern differences in inherited versus earned rank that are tied to female philopatry and male immigration.


Assuntos
Hidrocortisona/análise , Macaca mulatta/fisiologia , Caracteres Sexuais , Predomínio Social , Agressão , Animais , Comportamento Animal/fisiologia , Feminino , Cabelo/química , Masculino , Comportamento Social
3.
Appl Environ Microbiol ; 85(1)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30413480

RESUMO

There is growing evidence that anthropogenic sources of antibiotics and antimicrobial-resistant bacteria can spill over into natural ecosystems, raising questions about the role wild animals play in the emergence, maintenance, and dispersal of antibiotic resistance genes. In particular, we lack an understanding of how resistance genes circulate within wild animal populations, including whether specific host characteristics, such as social associations, promote interhost transmission of these genes. In this study, we used social network analysis to explore the forces shaping population-level patterns of resistant Escherichia coli in wild giraffe (Giraffa camelopardalis) and assess the relative importance of social contact for the dissemination of resistant E. coli between giraffe. Of 195 giraffe sampled, only 5.1% harbored E. coli isolates resistant to one or more tested antibiotics. Whole-genome sequencing on a subset of resistant isolates revealed a number of acquired resistance genes with linkages to mobile genetic elements. However, we found no evidence that the spread of resistance genes among giraffe was facilitated by interhost associations. Giraffe with lower social degree were more likely to harbor resistant E. coli, but this relationship was likely driven by a correlation between an individual's social connectedness and age. Indeed, resistant E. coli was most frequently detected in socially isolated neonates, indicating that resistant E. coli may have a selective advantage in the gastrointestinal tracts of neonates compared to other age classes. Taken together, these results suggest that the maintenance of antimicrobial-resistant bacteria in wild populations may, in part, be determined by host traits and microbial competition dynamics within the host.IMPORTANCE Antimicrobial resistance represents a significant threat to human health, food security, and the global economy. To fully understand the evolution and dissemination of resistance genes, a complete picture of antimicrobial resistance in all biological compartments, including natural ecosystems, is required. The environment and wild animals may act as reservoirs for anthropogenically derived resistance genes that could be transferrable to clinically relevant bacteria of humans and domestic animals. Our study investigated the possible transmission mechanisms for antimicrobial-resistant bacteria within a wild animal population and, more broadly, contributes to our understanding of how resistance genes are spread and maintained in natural ecosystems.


Assuntos
Farmacorresistência Bacteriana/genética , Escherichia coli/fisiologia , Genes Bacterianos/genética , Girafas/microbiologia , Animais , Escherichia coli/genética , Rede Social
4.
Environ Monit Assess ; 191(7): 456, 2019 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-31230187

RESUMO

The objective of the study was to assess the microbiological safety of popular recreational swimming sites in Central California. Water samples were collected from eleven monitoring sites across the lower reaches of two watersheds for two consecutive swimming seasons (2012-2013), and levels of indicator and pathogenic microorganisms were determined. Data on ambient weather and water chemistry were collected for analyzing their associations with microorganisms in water. All water samples were positive for indicator E. coli with mean concentrations per site ranging from 3.07 to 216.11 MPN/100 ml in 2012 and 13.4 to 226.97 MPN/100 ml in 2013. Mean E. coli concentrations in 27% and 36% samplings sites exceeded the EPA 2012 Recreational Water Quality Criteria recommended mean concentration of ≤ 126 CFU/100 ml of E. coli, in 2012 and 2013, respectively. Cryptosporidium spp. oocysts were detected in all water samples from all sampling sites, with an overall prevalence of 50% and mean concentrations of 0.08 oocysts/l in 2012 and 0.19 oocysts/l in 2013. Giardia spp. cysts were detected at eight sites, with an overall prevalence of 28.8% and mean concentration of 0.2 cysts/l in both years. The majority of the detected Cryptosporidium spp. oocysts and Giardia spp. cysts appeared damaged under microscopy. E. coli O157:H7 was detected in 9% of water samples, with positive samples limited to three sites. Salmonella spp. were detected in all but one site across the two years, with mean concentrations of 0.94 MPN/l in 2012 and 1.85 MPN/l in 2013. Cryptosporidium spp. oocyst concentrations were negatively associated with 30-day mean wind speed and cumulative precipitation and dissolved oxygen in water. Giardia spp. cyst concentrations were positively associated with turbidity and pH of water and negatively associated with E. coli concentrations and 24-h mean air temperature. Salmonella spp. concentrations were positively associated with 30-day mean air temperature. The occurrence of E. coli O157:H7 was positively associated with previous 30-day cumulative precipitation.


Assuntos
Cryptosporidium/isolamento & purificação , Monitoramento Ambiental/métodos , Escherichia coli O157/isolamento & purificação , Giardia/isolamento & purificação , Oocistos/isolamento & purificação , Salmonella/isolamento & purificação , Qualidade da Água , Água/parasitologia , Animais , California , Parques Recreativos , Estações do Ano , Natação , Microbiologia da Água , Tempo (Meteorologia)
5.
Proc Natl Acad Sci U S A ; 112(35): 11126-31, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26261343

RESUMO

In 2006, a deadly Escherichia coli O157:H7 outbreak in bagged spinach was traced to California's Central Coast region, where >70% of the salad vegetables sold in the United States are produced. Although no definitive cause for the outbreak could be determined, wildlife was implicated as a disease vector. Growers were subsequently pressured to minimize the intrusion of wildlife onto their farm fields by removing surrounding noncrop vegetation. How vegetation removal actually affects foodborne pathogens remains unknown, however. We combined a fine-scale land use map with three datasets comprising ∼250,000 enterohemorrhagic E. coli (EHEC), generic E. coli, and Salmonella tests in produce, irrigation water, and rodents to quantify whether seminatural vegetation surrounding farmland is associated with foodborne pathogen prevalence in California's Central Coast region. We found that EHEC in fresh produce increased by more than an order of magnitude from 2007 to 2013, despite extensive vegetation clearing at farm field margins. Furthermore, although EHEC prevalence in produce was highest on farms near areas suitable for livestock grazing, we found no evidence of increased EHEC, generic E. coli, or Salmonella near nongrazed, seminatural areas. Rather, pathogen prevalence increased the most on farms where noncrop vegetation was removed, calling into question reforms that promote vegetation removal to improve food safety. These results suggest a path forward for comanaging fresh produce farms for food safety and environmental quality, as federal food safety reforms spread across ∼4.5 M acres of US farmland.


Assuntos
Conservação dos Recursos Naturais , Microbiologia de Alimentos , Verduras/microbiologia , Escherichia coli/isolamento & purificação , Salmonella/isolamento & purificação
6.
J Environ Qual ; 47(5): 939-948, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30272786

RESUMO

In 2011, the US Congress passed the Food Safety Modernization Act, which tasks the US Food and Drug Administration to establish microbiological standards for agricultural water. However, little data are available for the microbiological quality of surface water irrigation supplies. During the 2015 irrigation season, we conducted a baseline study on the microbial water quality of large irrigation districts in California ( = 2) and Washington ( 4). Monthly samples ( 517) were analyzed for bacterial indicators (fecal coliforms, enterococci, and ) and pathogens ( spp., O157, and non-O157 Shiga toxin-producing [STEC]). Although there was a high degree of variability (µ ± SD = 59.13 ± 106.0), only 11% of samples (56/517) exceeded 126 colony-forming units (CFU) 100 mL, and only six samples exceeded 410 CFU 100 mL. Two volumes of water were collected for pathogen analysis (1 L and 10 L); prevalence of in 10-L samples (68149) was nearly double of that found in 1-L samples (132/517). We found STEC during ∼9% of sampling events (58/517); serotypes O26 and O45 were the most common at 31 and 26%, respectively. Pathogens were not associated with exceedance of the regulatory threshold, yet the odds of detecting increased approximately threefold (odds ration [O.R.] = 3.14, 0.0001) for every log increase in turbidity. Microbiological outcomes were highly district-specific, suggesting drivers of water quality vary across spatiotemporal scales. The true risk of contamination of produce from irrigation water supplies remains unknown, along with the optimal monitoring strategy to improve food safety.


Assuntos
Escherichia coli Shiga Toxigênica , Abastecimento de Água , Agricultura , California , Fezes , Microbiologia de Alimentos , Qualidade da Água
7.
Appl Environ Microbiol ; 83(16)2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28550057

RESUMO

Escherichia coli serotype O157:H7 is a zoonotic food- and waterborne bacterial pathogen that causes a high hospitalization rate and can cause life-threatening complications. Increasingly, E. coli O157:H7 infections appear to originate from fresh produce. Ruminants, such as cattle, are a prominent reservoir of E. coli O157:H7 in the United States. California is one of the most agriculturally productive regions in the world for fresh produce, beef, and milk. The close proximity of fresh produce and cattle presents food safety challenges on a uniquely large scale. We performed a survey of E. coli O157:H7 on 20 farms in California to observe the regional diversity and prevalence of E. coli O157:H7. Isolates were obtained from enrichment cultures of cow feces. Some farms were sampled on two dates. Genomes from isolates were sequenced to determine their relatedness and pathogenic potential. E. coli O157:H7 was isolated from approximately half of the farms. The point prevalence of E. coli O157:H7 on farms was highly variable, ranging from zero to nearly 90%. Within farms, generally one or a few lineages were found, even when the rate of isolation was high. On farms with high isolation rates, a single clonal lineage accounted for most of the isolates. Farms that were visited months after the first visit might have had the same lineages of E. coli O157:H7. Strains of E. coli O157:H7 may be persistent for months on farms.IMPORTANCE This survey of 20 cow-calf operations from different regions of California provides an in depth look at resident Escherichia coli O157:H7 populations at the molecular level. E. coli O157:H7 is found to have a highly variable prevalence, and with whole-genome sequencing, high prevalences in herds were found to be due to a single lineage shed from multiple cows. Few repeat lineages were found between farms in this area; therefore, we predict that E. coli O157:H7 has significant diversity in this area beyond what is detected in this survey. All isolates from this study were found to have pathogenic potential based on the presence of key virulence gene sequences. This represents a novel insight into pathogen diversity within a single subtype and will inform future attempts to survey regional pathogen populations.


Assuntos
Doenças dos Bovinos/microbiologia , Infecções por Escherichia coli/veterinária , Escherichia coli O157/isolamento & purificação , Animais , California/epidemiologia , Bovinos , Doenças dos Bovinos/epidemiologia , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Escherichia coli O157/classificação , Escherichia coli O157/genética , Fezes/microbiologia , Genômica , Filogenia
8.
J Environ Qual ; 45(2): 657-65, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27065413

RESUMO

Agricultural recovery basins are an important conservation practice designed to provide temporary storage of sediment and water on farms before low-volume discharge. However, food safety concerns have been raised regarding redistribution of captured sediment and water to fields used for human food production. The purpose of this study was to examine the potential microbiological risk that recovery basins may contribute to nearby produce fields and to evaluate characteristics that may influence or mitigate those risks. Water and sediment samples were collected from participating farms in three states and evaluated for bacterial indicators and pathogens over several months. Overall, 45% ( = 48) of water samples and less than 15% ( = 13) of sediment samples were positive for spp. In water samples, the occurrence of was positively associated with the use of surface water as a source of irrigation compared with groundwater as well as log-scale increases in concentration. In sediment samples, was associated with basin location (region) and basin fill levels. Sediment exposed to drying during dewatering had lower concentrations of indicator and a lower proportion of positives than submerged sediment from the same pond. Surrounding landscape characteristics, including vegetative coverage, proximity to livestock operations, and evidence of wildlife, were not correlated with pathogen occurrence in either sediment or water samples, suggesting that although habitat surrounding ponds may be an attractant to wildlife, those features may not contribute to increased pathogen occurrence in agricultural recovery basins.


Assuntos
Agricultura , Água Subterrânea , Microbiologia da Água , Lagoas , Água
9.
Am J Phys Anthropol ; 156(2): 286-94, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25348896

RESUMO

Macaques live in close contact with humans across South and Southeast Asia, and direct interaction is frequent. Aggressive contact is a concern in many locations, particularly among populations of rhesus and longtail macaques that co-inhabit urbanized cities and towns with humans. We investigated the proximate factors influencing the occurrence of macaque aggression toward humans as well as human aggression toward macaques to determine the extent to which human behavior elicits macaque aggression and vice versa. We conducted a 3-month study of four free-ranging populations of rhesus macaques in Dehradun, India from October-December 2012, using event sampling to record all instances of human-macaque interaction (N = 3120). Our results show that while human aggression was predicted by the potential for economic losses or damage, macaque aggression was influenced by aggressive or intimidating behavior by humans as well as recent rates of conspecific aggression. Further, adult female macaques participated in aggression more frequently than expected, whereas adult and subadult males participated as frequently as expected. Our analyses demonstrate that neither human nor macaque aggression is unprovoked. Rather, both humans and macaques are responding to one another's behavior. Mitigation of human-primate conflict, and indeed other types of human-wildlife conflict in such coupled systems, will require a holistic investigation of the ways in which each participant is responding to, and consequently altering, the behavior of the other.


Assuntos
Agressão/fisiologia , Animais Selvagens/fisiologia , Comportamento Animal/fisiologia , Macaca mulatta/fisiologia , Animais , Feminino , Humanos , Masculino , Armas
10.
J Environ Qual ; 44(5): 1435-47, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26436261

RESUMO

Surveys of microbiological groundwater quality were conducted in a region with intensive animal agriculture in California, USA. The survey included monitoring and domestic wells in eight concentrated animal feeding operations (CAFOs) and 200 small (domestic and community supply district) supply wells across the region. was not detected in groundwater, whereas O157:H7 and were each detected in 2 of 190 CAFO monitoring well samples. Nonpathogenic generic and spp. were detected in 24.2% (46/190) and 97.4% (185/190) groundwater samples from CAFO monitoring wells and in 4.2% (1/24) and 87.5% (21/24) of CAFO domestic wells, respectively. Concentrations of both generic and spp. were significantly associated with well depth, season, and the type of adjacent land use in the CAFO. No pathogenic bacteria were detected in groundwater from 200 small supply wells in the extended survey. However, 4.5 to 10.3% groundwater samples were positive for generic and . Concentrations of generic were not significantly associated with any factors, but concentrations of were significantly associated with proximity to CAFOs, seasons, and concentrations of potassium in water. Among a subset of and isolates from both surveys, the majority of (63.6%) and (86.1%) isolates exhibited resistance to multiple (≥3) antibiotics. Findings confirm significant microbial and antibiotic resistance loading to CAFO groundwater. Results also demonstrate significant attenuative capacity of the unconfined alluvial aquifer system with respect to microbial transport.

11.
J Anim Ecol ; 83(2): 406-14, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24117416

RESUMO

Although network analysis has drawn considerable attention as a promising tool for disease ecology, empirical research has been hindered by limitations in detecting the occurrence of pathogen transmission (who transmitted to whom) within social networks. Using a novel approach, we utilize the genetics of a diverse microbe, Escherichia coli, to infer where direct or indirect transmission has occurred and use these data to construct transmission networks for a wild giraffe population (Giraffe camelopardalis). Individuals were considered to be a part of the same transmission chain and were interlinked in the transmission network if they shared genetic subtypes of E. coli. By using microbial genetics to quantify who transmits to whom independently from the behavioural data on who is in contact with whom, we were able to directly investigate how the structure of contact networks influences the structure of the transmission network. To distinguish between the effects of social and environmental contact on transmission dynamics, the transmission network was compared with two separate contact networks defined from the behavioural data: a social network based on association patterns, and a spatial network based on patterns of home-range overlap among individuals. We found that links in the transmission network were more likely to occur between individuals that were strongly linked in the social network. Furthermore, individuals that had more numerous connections or that occupied 'bottleneck' positions in the social network tended to occupy similar positions in the transmission network. No similar correlations were observed between the spatial and transmission networks. This indicates that an individual's social network position is predictive of transmission network position, which has implications for identifying individuals that function as super-spreaders or transmission bottlenecks in the population. These results emphasize the importance of association patterns in understanding transmission dynamics, even for environmentally transmitted microbes like E. coli. This study is the first to use microbial genetics to construct and analyse transmission networks in a wildlife population and highlights the potential utility of an approach integrating microbial genetics with network analysis.


Assuntos
Infecções por Escherichia coli/veterinária , Escherichia coli/fisiologia , Girafas , Comportamento de Retorno ao Território Vital , Comportamento Social , Animais , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/transmissão , Feminino , Quênia , Masculino
12.
Environ Monit Assess ; 186(2): 1253-60, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24097011

RESUMO

Generic Escherichia coli was isolated from surface water and groundwater samples from two dairies in Northern California and tested for susceptibility to antibiotics. Surface samples were collected from flush water, lagoon water, and manure solids, and groundwater samples were collected from monitoring wells. Although E. coli was ubiquitous in surface samples with concentrations ranging from several hundred thousand to over a million colony-forming units per 100 mL of surface water or per gram of surface solids, groundwater under the influence of these high surface microbial loadings had substantially fewer bacteria (3- to 7-log10 reduction). Among 80 isolates of E. coli tested, 34 (42.5%) were resistant to one or more antibiotics and 22 (27.5%) were multi-antibiotic resistant (resistant to ≥3 antibiotics), with resistance to tetracycline, cefoxitin, amoxicillin/clavulanic acid, and ampicillin being the most common. E. coli isolates from the calf hutch area exhibited the highest levels of multi-antibiotic resistance, much higher than isolates in surface soil solids from heifer and cow pens, flush alleys, manure storage lagoons, and irrigated fields. Among E. coli isolates from four groundwater samples, only one sample exhibited resistance to ceftriaxone, chloramphenicol, and tetracycline, indicating the potential of groundwater contamination with antibiotic-resistant bacteria from dairy operations.


Assuntos
Indústria de Laticínios , Farmacorresistência Bacteriana/genética , Monitoramento Ambiental , Escherichia coli/genética , Água Subterrânea/microbiologia , Animais , California , Bovinos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/isolamento & purificação , Água Subterrânea/química , Testes de Sensibilidade Microbiana , Microbiologia da Água
13.
Heliyon ; 10(5): e26811, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38444485

RESUMO

The incidence of antimicrobial resistance (AMR) in the environment is often overlooked and leads to serious health threats under the One Health paradigm. Infection with extended-spectrum ß-lactamase (ESBL) producing bacteria in humans and animals has been widely examined, with the mode of transmission routes such as food, water, and contact with a contaminated environment. The purpose of this study was to determine the occurrence and molecular characteristics of resistant Salmonella enterica (S. enterica) (n = 59) and Escherichia coli (E. coli) (n = 392) isolated from produce commodities collected from fresh markets and supermarkets in Bangkok, Thailand. In this study, the S. enterica isolates exhibited the highest prevalence of resistance to tetracycline (11.9%) and streptomycin (8.5%), while the E. coli isolates were predominantly resistant to tetracycline (22.5%), ampicillin (21.4%), and sulfamethoxazole (11.5%). Among isolates of S. enterica (6.8%) and E. coli (15.3%) were determined as multidrug resistant (MDR). The prevalence of ESBL-producing isolates was 5.1% and 1.0% in S. enterica and E. coli, respectively. A minority of S. enterica isolates, where a single isolate exclusively carried blaCTX-M-55 (n = 1), and another isolate harbored both blaCTX-M-55 and blaTEM-1 (n = 1); similarly, a minority of E. coli isolates contained blaCTX-M-55 (n = 2) and blaCTX-M-15 (n = 1). QnrS (11.9%) and blaTEM (20.2%) were the most common resistant genes found in S. enterica and E. coli, respectively. Nine isolates resistant to ciprofloxacin contained point mutations in gyrA and parC. In addition, the odds of resistance to tetracycline among isolates of S. enterica were positively associated with the co-occurrence of ampicillin resistance and the presence of tetB (P = 0.001), while the E. coli isolates were positively associated with ampicillin resistance, streptomycin resistance, and the presence of tetA (P < 0.0001) in this study. In summary, these findings demonstrate that fresh vegetables and fruits, such as cucumbers and tomatoes, can serve as an important source of foodborne AMR S. enterica and E. coli in the greater Bangkok area, especially given the popularity of these fresh commodities in Thai cuisine.

14.
PLoS One ; 19(4): e0299987, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38564611

RESUMO

This study aimed to investigate AMR profiles of Aeromonas hydrophila, Salmonella spp., and Vibrio cholerae isolated from Nile tilapia (Oreochromis spp.) (n = 276) purchased from fresh markets and supermarkets in Bangkok, Thailand. A sample of tilapia was divided into three parts: fish intestine (n = 276), fish meat (n = 276), and liver and kidney (n = 276). The occurrence of A. hydrophila, Salmonella, and V. cholerae was 3.1%, 7.4%, and 8.5%, respectively. A high prevalence of these pathogenic bacteria was observed in fresh market tilapia compared to those from supermarkets (p < 0.05). The predominant Salmonella serovars were Paratyphi B (6.4%), followed by Escanaba (5.7%), and Saintpaul (5.7%). All isolates tested positive for the virulence genes of A. hydrophila (aero and hly), Salmonella (invA), and V. cholerae (hlyA). A. hydrophila (65.4%), Salmonella (31.2%), and V. cholerae (2.9%) showed multidrug resistant isolates. All A. hydrophila isolates (n = 26) exhibited resistant to ampicillin (100.0%) and florfenicol (100.0%), and often carried sul1 (53.8%) and tetA (50.0%). Salmonella isolates were primarily resistant to ampicillin (36.9%), with a high incidence of blaTEM (26.2%) and qnrS (25.5%). For V. cholerae isolates, resistance was observed against ampicillin (48.6%), and they commonly carried qnrS (24.3%) and tetA (22.9%). To identify mutations in the quinolone resistance determining regions (QRDRs), a single C248A point mutation of C248A (Ser-83-Tyr) in the gyrA region was identified in six out of seven isolates of Salmonella isolates. This study highlighted the presence of antimicrobial-resistant pathogenic bacteria in Nile tilapia at a selling point. It is important to rigorously implement strategies for AMR control and prevention.


Assuntos
Ciclídeos , Doenças Transmitidas por Alimentos , Animais , Antibacterianos/farmacologia , Ciclídeos/microbiologia , Farmacorresistência Bacteriana/genética , Tailândia/epidemiologia , Ampicilina , Aeromonas hydrophila/genética , Salmonella , Doenças Transmitidas por Alimentos/epidemiologia
15.
Sci Rep ; 14(1): 4448, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396015

RESUMO

The objective of this study was to evaluate the impact of dietary zinc supplementation in pre-weaned dairy calves on the phenotypic antimicrobial resistance (AMR) of fecal commensal bacteria. A repository of fecal specimens from a random sample of calves block-randomized into placebo (n = 39) and zinc sulfate (n = 28) groups collected over a zinc supplementation clinical trial at the onset of calf diarrhea, calf diarrheal cure, and the last day of 14 cumulative days of zinc or placebo treatment were analyzed. Antimicrobial susceptibility testing was conducted for Enterococcus spp. (n = 167) and E. coli (n = 44), with one representative isolate of each commensal bacteria tested per sample. Parametric survival interval regression models were constructed to evaluate the association between zinc treatment and phenotypic AMR, with exponentiated accelerated failure time (AFT) coefficients adapted for MIC instead of time representing the degree of change in AMR (MIC Ratio, MR). Findings from our study indicated that zinc supplementation did not significantly alter the MIC in Enterococcus spp. for 13 drugs: gentamicin, vancomycin, ciprofloxacin, erythromycin, penicillin, nitrofurantoin, linezolid, quinupristin/dalfopristin, tylosin tartrate, streptomycin, daptomycin, chloramphenicol, and tigecycline (MR = 0.96-2.94, p > 0.05). In E. coli, zinc supplementation was not associated with resistance to azithromycin (MR = 0.80, p > 0.05) and ceftriaxone (MR = 0.95, p > 0.05). However, a significant reduction in E. coli MIC values was observed for ciprofloxacin (MR = 0.17, 95% CI 0.03-0.97) and nalidixic acid (MR = 0.28, 95% CI 0.15-0.53) for zinc-treated compared to placebo-treated calves. Alongside predictions of MIC values generated from these 17 AFT models, findings from this study corroborate the influence of age and antimicrobial exposure on phenotypic AMR.


Assuntos
Antibacterianos , Anti-Infecciosos , Animais , Bovinos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Zinco/farmacologia , Escherichia coli , Farmacorresistência Bacteriana , Anti-Infecciosos/farmacologia , Enterococcus , Diarreia/tratamento farmacológico , Diarreia/veterinária , Diarreia/microbiologia , Compostos Orgânicos/farmacologia , Suplementos Nutricionais , Ciprofloxacina/farmacologia
16.
Front Microbiol ; 15: 1420300, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39296303

RESUMO

Food-producing animals such as dairy cattle are potential reservoirs of antimicrobial resistance (AMR), with multidrug-resistant (MDR) organisms such as Escherichia coli observed in higher frequency in young calves compared to older cattle. In this study, we characterized the genomes of enteric MDR E. coli from pre-weaned dairy calves with and without diarrhea and evaluated the influence of host-level factors on genomic composition. Whole genome sequence comparative analysis of E. coli (n = 43) revealed substantial genomic diversity that primarily clustered by sequence type and was minimally driven by calf diarrheal disease status (healthy, diarrheic, or recovered), antimicrobial exposure, and dietary zinc supplementation. Diverse AMR genes (ARGs)-including extended-spectrum beta-lactamase genes and quinolone resistance determinants-were identified (n = 40), with unique sets of ARGs co-occurring in gene clusters with large AMR plasmids IncA/C2 and IncFIB(AP001918). Zinc supplementation was not significantly associated with the selection of individual ARGs in E. coli, however analysis of ARG and metal resistance gene pairs identified positive associations between certain aminoglycoside, beta-lactam, sulfonamide, and trimethoprim ARGs with acid, tellurium and mercury resistance genes. Although E. coli in this study lacked the typical virulence factors of diarrheagenic strains, virulence genes overlapping with those in major pathotypes were identified. Among the 103 virulence genes detected, the highest abundance and diversity of genes corresponded to iron acquisition (siderophores and heme uptake). Our findings indicate that the host-level factors evaluated in this study were not key drivers of genomic variability, but that certain accessory genes in enteric MDR E. coli may be enriched. Collectively, this work provides insight into the genomic diversity and host-microbe interface of MDR E. coli from pre-weaned dairy calves.

17.
Int J Food Microbiol ; 421: 110785, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38878703

RESUMO

Antimicrobial resistance (AMR) is a global emerging problem for food safety and public health. Retail meat is one of the vehicles that may transmit antimicrobial resistant bacteria to humans. Here we assessed the phenotypic and genotypic resistance of non-typhoidal Salmonella from retail meat collected in California in 2019 by the National Antimicrobial Resistance Monitoring System (NARMS) Retail Food Surveillance program. A total of 849 fresh meat samples were collected from randomly selected grocery stores in Northern and Southern California from January to December 2019. The overall prevalence of Salmonella was 15.31 %, with a significantly higher occurrence in Southern (28.38%) than in Northern (5.22 %) California. The prevalence of Salmonella in chicken (24.01 %) was higher (p < 0.001) compared to ground turkey (5.42 %) and pork (3.08 %) samples. No Salmonella were recovered from ground beef samples. The prevalence of Salmonella in meat with reduced antibiotic claim (20.35 %) was higher (p < 0.001) than that with conventional production (11.96 %). Salmonella isolates were classified into 25 serotypes with S. Kentucky (47.73 %), S. typhimurium (11.36 %), and S. Alachua (7.58 %) as predominant serotypes. Thirty-two out of 132 (24.24 %) Salmonella isolates were susceptible to all tested antimicrobial drugs, while 75.76 % were resistant to one or more drugs, 62.88 % to two or more drugs, and 9.85 % to three or more drugs. Antimicrobials that Salmonella exhibited high resistance to were tetracycline (82/132, 62.12 %) and streptomycin (79/132, 59.85 %). No significant difference was observed between reduced antibiotic claim and conventional production in the occurrence of single and multidrug resistance. A total of 23 resistant genes, a D87Y mutation of gyrA, and 23 plasmid replicons were identified from resistant Salmonella isolates. Genotypic and phenotypic results were well correlated with an overall sensitivity of 96.85 %. S. infantis was the most resistant serotype which also harbored the IncFIB (pN55391) plasmid replicon and gyrA (87) mutation. Data from Northern and Southern California in this study helps us to understand the AMR trends in Salmonella from retail meat sold in the highly populous and demographically diverse state of California.


Assuntos
Antibacterianos , Genótipo , Carne , Testes de Sensibilidade Microbiana , Fenótipo , Salmonella , Salmonella/genética , Salmonella/efeitos dos fármacos , Salmonella/isolamento & purificação , Animais , California , Carne/microbiologia , Antibacterianos/farmacologia , Suínos , Microbiologia de Alimentos , Galinhas/microbiologia , Farmacorresistência Bacteriana , Bovinos , Perus/microbiologia , Farmacorresistência Bacteriana Múltipla/genética
18.
Appl Environ Microbiol ; 79(20): 6337-44, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23934490

RESUMO

Recent outbreaks of food-borne illness associated with the consumption of produce have increased concern over wildlife reservoirs of food-borne pathogens. Wild rodents are ubiquitous, and those living close to agricultural farms may pose a food safety risk should they shed zoonotic microorganisms in their feces near or on agricultural commodities. Fecal samples from wild rodents trapped on 13 agricultural farms (9 produce, 3 cow-calf operations, and 1 beef cattle feedlot) in Monterey and San Benito Counties, CA, were screened to determine the prevalence and risk factors for shedding of several food-borne pathogens. Deer mice (Peromyscus maniculatus) were the most abundant rodent species trapped (72.5%). Cryptosporidium species (26.0%) and Giardia species (24.2%) were the predominant isolates from rodent feces, followed by Salmonella enterica serovars (2.9%) and Escherichia coli O157:H7 (0.2%). Rodent trap success was significantly associated with detection of Salmonella in rodent feces, while farm type was associated with fecal shedding of Cryptosporidium and Giardia. Seasonal shedding patterns were evident, with rodents trapped during the spring and summer months being significantly less likely to be shedding Cryptosporidium oocysts than those trapped during autumn. Higher rodent species diversity tended to correlate with lower fecal microbial prevalence, and most spatiotemporal pathogen clusters involved deer mice. Rodents in the study area posed a minimal risk as environmental reservoirs of E. coli O157:H7, but they may play a role in environmental dissemination of Salmonella and protozoa. Rodent control efforts that potentially reduce biodiversity may increase pathogen shedding, possibly through promotion of intraspecific microbial transmission.


Assuntos
Bactérias/isolamento & purificação , Infecções Bacterianas/veterinária , Fezes/microbiologia , Fezes/parasitologia , Parasitos/isolamento & purificação , Roedores/microbiologia , Animais , Animais Selvagens , Bactérias/classificação , Infecções Bacterianas/epidemiologia , Infecções Bacterianas/microbiologia , California/epidemiologia , Doenças Transmitidas por Alimentos/microbiologia , Doenças Transmitidas por Alimentos/parasitologia , Camundongos , Parasitos/classificação , Prevalência , Estações do Ano , Zoonoses/microbiologia , Zoonoses/parasitologia
19.
J Environ Qual ; 42(1): 229-38, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23673758

RESUMO

Fecal coliform and associated with suspended solids (SS) and water in five northern California estuaries were studied to document process influences and water quality monitoring biases affecting indicator bacteria concentrations. We collected and analyzed 2371 samples during 10 sampling events for the five studied estuaries. Concentrations during wet-season stormflow conditions were greater than during wet-season base flow and dry-season base flow conditions. Results also document concentration gradients across the length of the studied estuaries and with depth of sample collection. Highest concentrations were associated with shallow samples collected furthest inland. Corresponding decreases occurred the deeper and closer to the estuary mouth a sample was collected. Results also identify direct relationships of wind speed and discharge velocity and indirect relationship of tide stage to indicator bacteria concentrations. Bacteria associated with suspended solids (SS), after conversion to the same units of measurement (mass), were three orders of magnitude greater than in the water fraction. However, the mean proportion contributed by SS to composite water sample concentrations was 8% (SE 0.3) for fecal coliform and 7% (SE 0.3) for . Bacteria from the SS proportion is related to seasonality, tide stage, and discharge velocity that are consistent with mechanisms for entrainment, transport of SS, and reduced particle settling. These results are important for both managing and monitoring these systems by improving sample spatial and temporal context and corresponding bacteria concentration values across the freshwater-saltwater interface.


Assuntos
Estuários , Água , Monitoramento Ambiental , Fezes/microbiologia , Água Doce/microbiologia , Microbiologia da Água
20.
PeerJ ; 11: e14896, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36855429

RESUMO

Background: Tilapia is a primary aquaculture fish in Thailand, but little is known about the occurrence of antimicrobial resistance (AMR) in Aeromonas hydrophila, Salmonella spp., and Vibrio cholerae colonizing healthy tilapia intended for human consumption and the co-occurrence of these AMR bacteria in the cultivation water. Methods: This study determined the phenotype and genotype of AMR, extended-spectrum ß-lactamase (ESBL) production, and virulence factors of A. hydrophila, Salmonella spp., and V. cholerae isolated from hybrid red tilapia and cultivation water in Thailand. Standard culture methods such as USFDA's BAM or ISO procedures were used for the original isolation, with all isolates confirmed by biochemical tests, serotyping, and species-specific gene detection based on PCR. Results: A total of 278 isolates consisting of 15 A. hydrophila, 188 Salmonella spp., and 75 V. cholerae isolates were retrieved from a previous study. All isolates of A. hydrophila and Salmonella isolates were resistance to at least one antimicrobial, with 26.7% and 72.3% of the isolates being multidrug resistant (MDR), respectively. All A. hydrophila isolates were resistant to ampicillin (100%), followed by oxytetracycline (26.7%), tetracycline (26.7%), trimethoprim (26.7%), and oxolinic acid (20.0%). The predominant resistance genes in A. hydrophila were mcr-3 (20.0%), followed by 13.3% of isolates having floR, qnrS, sul1, sul2, and dfrA1. Salmonella isolates also exhibited a high prevalence of resistance to ampicillin (79.3%), oxolinic acid (75.5%), oxytetracycline (71.8%), chloramphenicol (62.8%), and florfenicol (55.3%). The most common resistance genes in these Salmonella isolates were qnrS (65.4%), tetA (64.9%), bla TEM (63.8%), and floR (55.9%). All V. cholerae isolates were susceptible to all antimicrobials tested, while the most common resistance gene was sul1 (12.0%). One isolate of A. hydrophila was positive for int1, while all isolates of Salmonella and V. cholerae isolates were negative for integrons and int SXT. None of the bacterial isolates in this study were producing ESBL. The occurrence of mcr-3 (20.0%) in these isolates from tilapia aquaculture may signify a serious occupational and consumer health risk given that colistin is a last resort antimicrobial for treatment of Gram-negative bacteria infections. Conclusions: Findings from this study on AMR bacteria in hybrid red tilapia suggest that aquaculture as practiced in Thailand can select for ubiquitous AMR pathogens, mobile genetic elements, and an emerging reservoir of mcr and colistin-resistant bacteria. Resistant and pathogenic bacteria, such as resistance to ampicillin and tetracycline, or MDR Salmonella circulating in aquaculture, together highlight the public health concerns and foodborne risks of zoonotic pathogens in humans from cultured freshwater fish.


Assuntos
Oxitetraciclina , Tilápia , Animais , Aeromonas hydrophila/genética , Ampicilina , Antibacterianos/farmacologia , Colistina , Farmacorresistência Bacteriana/genética , Ácido Oxolínico , Tetraciclina , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa