Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Mol Pharm ; 20(2): 1323-1330, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36668814

RESUMO

Monoclonal antibodies (mAbs) are often formulated as high-protein-concentration solutions, which in some cases can exhibit physical stability issues such as high viscosity and opalescence. To ensure that mAb-based drugs can meet their manufacturing, stability, and delivery requirements, it is advantageous to screen for and select mAbs during discovery that are not prone to such behaviors. It has been recently shown that both these macroscopic properties can be predicted to a certain extent from the diffusion interaction parameter (kD), which is a measure of self-association under dilute conditions.1 However, kD can be challenging to measure at the early stage of discovery, where a relatively large amount of a high-purity material, which is required by traditional methods, is often not available. In this study, we demonstrate asymmetric field-flow fractionation (AF4) as a tool to measure self-association and therefore identify antibodies with problematic issues at high concentrations. The principle lies on the ability to concentrate the sample close to the membrane during the injection mode, which can reach formulation-relevant concentrations (>100 mg/mL).2 By analyzing a well-characterized library of commercial antibodies, we show that the measured retention time of the antibodies allows us to pinpoint molecules that exhibit issues at high concentrations. Remarkably, our AF4 assay requires very little (30 µg) sample under dilute conditions and does not need extensive sample purification. Furthermore, we show that a polyethylene glycol (PEG) precipitation assay provides results consistent with AF4 and moreover can further differentiate molecules with issues of opalescence or high viscosity. Overall, our results delineate a two-step strategy for the identification of problematic variants at high concentrations, with AF4 for early developability screening, followed by a PEG assay to validate the problematic molecules and further discriminate between opalescence or high-viscosity issues. This two-step antibody selection strategy enables us to select antibodies early in the discovery process, which are compatible with high-concentration formulations.


Assuntos
Anticorpos Monoclonais , Polietilenoglicóis/química
2.
PLoS Pathog ; 14(2): e1006888, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29474461

RESUMO

The concerns raised from adenovirus 5 (Ad5)-based HIV vaccine clinical trials, where excess HIV infections were observed in some vaccine recipients, have highlighted the importance of understanding host responses to vaccine vectors and the HIV susceptibility of vector-specific CD4 T cells in HIV vaccination. Our recent study reported that human Ad5-specific CD4 T cells induced by Ad5 vaccination (RV156A trial) are susceptible to HIV. Here we further investigated the HIV susceptibility of vector-specific CD4 T cells induced by ALVAC, a canarypox viral vector tested in the Thai trial RV144, as compared to Ad5 vector-specific CD4 T cells in the HVTN204 trial. We showed that while Ad5 vector-specific CD4 T cells were readily susceptible to HIV, ALVAC-specific CD4 T cells in RV144 PBMC were substantially less susceptible to both R5 and X4 HIV in vitro. The lower HIV susceptibility of ALVAC-specific CD4 T cells was associated with the reduced surface expression of HIV entry co-receptors CCR5 and CXCR4 on these cells. Phenotypic analyses identified that ALVAC-specific CD4 T cells displayed a strong Th1 phenotype, producing higher levels of IFN-γ and CCL4 (MIP-1ß) but little IL-17. Of interest, ALVAC and Ad5 vectors induced distinct profiles of vector-specific CD8 vs. CD4 T-cell proliferative responses in PBMC, with ALVAC preferentially inducing CD8 T-cell proliferation, while Ad5 vector induced CD4 T-cell proliferation. Depletion of ALVAC-, but not Ad5-, induced CD8 T cells in PBMC led to a modest increase in HIV infection of vector-specific CD4 T cells, suggesting a role of ALVAC-specific CD8 T cells in protecting ALVAC-specific CD4 T cells from HIV. Taken together, our data provide strong evidence for distinct HIV susceptibility of CD4 T cells induced by different vaccine vectors and highlight the importance of better evaluating anti-vector responses in HIV vaccination.


Assuntos
Vacinas contra a AIDS/imunologia , Linfócitos T CD4-Positivos/imunologia , Vetores Genéticos/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Vacinas contra a AIDS/administração & dosagem , Adenoviridae/genética , Adenoviridae/imunologia , Linfócitos T CD4-Positivos/virologia , Células Cultivadas , Suscetibilidade a Doenças/imunologia , Humanos , Leucócitos Mononucleares/imunologia , Ativação Linfocitária/genética
3.
PLoS Pathog ; 12(6): e1005663, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27280548

RESUMO

Loss of immune control over opportunistic infections can occur at different stages of HIV-1 (HIV) disease, among which mucosal candidiasis caused by the fungal pathogen Candida albicans (C. albicans) is one of the early and common manifestations in HIV-infected human subjects. The underlying immunological basis is not well defined. We have previously shown that compared to cytomegalovirus (CMV)-specific CD4 cells, C. albicans-specific CD4 T cells are highly permissive to HIV in vitro. Here, based on an antiretroviral treatment (ART) naïve HIV infection cohort (RV21), we investigated longitudinally the impact of HIV on C. albicans- and CMV-specific CD4 T-cell immunity in vivo. We found a sequential dysfunction and preferential depletion for C. albicans-specific CD4 T cell response during progressive HIV infection. Compared to Th1 (IFN-γ, MIP-1ß) functional subsets, the Th17 functional subsets (IL-17, IL-22) of C. albicans-specific CD4 T cells were more permissive to HIV in vitro and impaired earlier in HIV-infected subjects. Infection history analysis showed that C. albicans-specific CD4 T cells were more susceptible to HIV in vivo, harboring modestly but significantly higher levels of HIV DNA, than CMV-specific CD4 T cells. Longitudinal analysis of HIV-infected individuals with ongoing CD4 depletion demonstrated that C. albicans-specific CD4 T-cell response was preferentially and progressively depleted. Taken together, these data suggest a potential mechanism for earlier loss of immune control over mucosal candidiasis in HIV-infected patients and provide new insights into pathogen-specific immune failure in AIDS pathogenesis.


Assuntos
Infecções Oportunistas Relacionadas com a AIDS/imunologia , Linfócitos T CD4-Positivos/imunologia , Candidíase/imunologia , Infecções por HIV/complicações , Candida albicans , Citomegalovirus/imunologia , Citometria de Fluxo , Infecções por HIV/imunologia , HIV-1/imunologia , Humanos , Reação em Cadeia da Polimerase , Transcriptoma
4.
Proc Natl Acad Sci U S A ; 111(38): 13966-71, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25201968

RESUMO

The synaptic vesicle protein synaptotagmin-1 (SYT) is required to couple calcium influx to the membrane fusion machinery. However, the structural mechanism underlying this process is unclear. Here we report an unexpected circular arrangement (ring) of SYT's cytosolic domain (C2AB) formed on lipid monolayers in the absence of free calcium ions as revealed by electron microscopy. Rings vary in diameter from 18-43 nm, corresponding to 11-26 molecules of SYT. Continuous stacking of the SYT rings occasionally converts both lipid monolayers and bilayers into protein-coated tubes. Helical reconstruction of the SYT tubes shows that one of the C2 domains (most likely C2B, based on its biochemical properties) interacts with the membrane and is involved in ring formation, and the other C2 domain points radially outward. SYT rings are disrupted rapidly by physiological concentrations of free calcium but not by magnesium. Assuming that calcium-free SYT rings are physiologically relevant, these results suggest a simple and novel mechanism by which SYT regulates neurotransmitter release: The ring acts as a spacer to prevent the completion of the soluble N-ethylmaleimide-sensitive factor activating protein receptor (SNARE) complex assembly, thereby clamping fusion in the absence of calcium. When the ring disassembles in the presence of calcium, fusion proceeds unimpeded.


Assuntos
Cálcio/química , Bicamadas Lipídicas/química , Complexos Multiproteicos/química , Proteínas SNARE/química , Sinaptotagmina I/química , Humanos , Complexos Multiproteicos/ultraestrutura , Estrutura Terciária de Proteína
5.
Langmuir ; 32(12): 3015-23, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26972604

RESUMO

Here we introduce ApoE-based nanolipoprotein particle (NLP)-a soluble, discoidal bilayer mimetic of ∼23 nm in diameter, as fusion partners to study the dynamics of fusion pores induced by SNARE proteins. Using in vitro lipid mixing and content release assays, we report that NLPs reconstituted with synaptic v-SNARE VAMP2 (vNLP) fuse with liposomes containing the cognate t-SNARE (Syntaxin1/SNAP25) partner, with the resulting fusion pore opening directly to the external buffer. Efflux of encapsulated fluorescent dextrans of different sizes show that unlike the smaller nanodiscs, these larger NLPs accommodate the expansion of the fusion pore to at least ∼9 nm, and dithionite quenching of fluorescent lipid introduced in vNLP confirms that the NLP fusion pores are short-lived and eventually reseal. The NLPs also have capacity to accommodate larger number of proteins and using vNLPs with defined number of VAMP2 protein, including physiologically relevant copy numbers, we find that 3-4 copies of VAMP2 (minimum 2 per face) are required to keep a nascent fusion pore open, and the SNARE proteins act cooperatively to dilate the nascent fusion pore.


Assuntos
Apolipoproteínas E/química , Fusão de Membrana , Nanopartículas/química , Cálcio , Colesterol/química , Dextranos , Dimiristoilfosfatidilcolina/química , Ditionita , Corantes Fluorescentes/química , Lipossomos , Tamanho da Partícula , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Fosfatidilinositol 4,5-Difosfato , Fosfatidilinositóis , Fosfatidilserinas/química , Proteína 25 Associada a Sinaptossoma/química , Sintaxina 1/química , Proteína 2 Associada à Membrana da Vesícula/química
6.
Biochemistry ; 53(19): 3248-60, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24786965

RESUMO

The Sec pathway mediates translocation of protein across the inner membrane of bacteria. SecA is a motor protein that drives translocation of preprotein through the SecYEG channel. SecA reversibly dimerizes under physiological conditions, but different dimer interfaces have been observed in SecA crystal structures. Here, we have used biophysical approaches to address the nature of the SecA dimer that exists in solution. We have taken advantage of the extreme salt sensitivity of SecA dimerization to compare the rates of hydrogen-deuterium exchange of the monomer and dimer and have analyzed the effects of single-alanine substitutions on dimerization affinity. Our results support the antiparallel dimer arrangement observed in one of the crystal structures of Bacillus subtilis SecA. Additional residues lying within the preprotein binding domain and the C-terminus are also protected from exchange upon dimerization, indicating linkage to a conformational transition of the preprotein binding domain from an open to a closed state. In agreement with this interpretation, normal mode analysis demonstrates that the SecA dimer interface influences the global dynamics of SecA such that dimerization stabilizes the closed conformation.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Bactérias/química , Escherichia coli/química , Proteínas de Membrana Transportadoras/química , Multimerização Proteica/fisiologia , Adenosina Trifosfatases/genética , Substituição de Aminoácidos , Bacillus subtilis/química , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Cristalografia por Raios X , Escherichia coli/genética , Proteínas de Membrana Transportadoras/genética , Estrutura Quaternária de Proteína , Canais de Translocação SEC , Proteínas SecA
7.
Infect Immun ; 82(3): 1308-14, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24379292

RESUMO

The contribution of interleukin-3 (IL-3), a hematopoietic growth factor and immunoregulatory cytokine, to resistance to blood-stage malaria was investigated by infecting IL-3-deficient (knockout [KO]) mice with Plasmodium berghei NK65. Male IL-3 KO mice, but not female mice, were more resistant to infection than wild-type (WT) mice, as evidenced by lower peak parasitemia and prolonged survival. Both male and female IL-3 KO mice had increased splenomegaly and were more anemic than corresponding WT mice. Anemia was compensated for by an increase in bone marrow and splenic erythropoiesis in IL-3 KO mice, as evidenced by higher levels of erythroid progenitors. Plasma levels of gamma interferon (IFN-γ) and CXCL9 (monokine induced by IFN-γ [MIG]) were found to be significantly reduced in IL-3 KO mice during early stages of infection. In contrast, granulocyte colony-stimulating factor (G-CSF) levels were significantly higher, and the percentage of peripheral blood neutrophils lower, in infected IL-3 KO mice than in WT counterparts. Overall, our results indicate that IL-3 plays a critical role in suppressing protective immunity to P. berghei NK65 infection and that it is involved in inhibiting the development of splenomegaly, anemia, and erythropoiesis. IL-3 also influences IFN-γ, CXCL9, and G-CSF production in response to infection. The abnormal responses seen in infected IL-3 KO mice may be due to the lack of IL-3 during development, to the lack of IL-3 in the infected mature mice, or to both.


Assuntos
Interleucina-3/deficiência , Interleucina-3/imunologia , Malária/imunologia , Anemia/sangue , Anemia/imunologia , Anemia/metabolismo , Animais , Quimiocina CXCL9/sangue , Eritropoese/imunologia , Feminino , Fator Estimulador de Colônias de Granulócitos/sangue , Interferon gama/sangue , Interleucina-3/metabolismo , Malária/sangue , Malária/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Neutrófilos/metabolismo , Plasmodium berghei/imunologia , Baço/imunologia , Baço/metabolismo
8.
Pharmaceutics ; 16(1)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38258117

RESUMO

Co-delivery of antigens and adjuvants to the same antigen-presenting cells (APCs) can significantly improve the efficacy and safety profiles of vaccines. Here, we report amine-grafted silica nanoparticles (A-SNP) as a tunable vaccine co-delivery platform for TLR7/8 agonists along with the recombinant influenza antigen hemagglutinin H7 (H7) to APCs. A-SNP of two different sizes (50 and 200 nm) were prepared and coated with INI-4001 at different coating densities, followed by co-adsorption of H7. Both INI-4001 and H7 showed >90% adsorption to the tested A-SNP formulations. TNF-α and IFN-α cytokine release by human peripheral blood mononuclear cells as well as TNF-α, IL-6, and IL-12 release by mouse bone marrow-derived dendritic cells revealed that the potency of the INI-4001-adsorbed A-SNP (INI-4001/A-SNP) formulations was improved relative to aqueous formulation control. This improved potency was dependent on particle size and ligand coating density. In addition, slow-release profiles of INI-4001 were measured from INI-4001/A-SNP formulations in plasma with 30-50% INI-4001 released after 7 days. In vivo murine immunization studies demonstrated significantly improved H7-specific humoral and Th1/Th17-polarized T cell immune responses with no observed adverse reactions. Low-density 50 nm INI-4001/A-SNP elicited significantly higher IFN-γ and IL-17 induction over that of the H7 antigen-only group and INI-4001 aqueous formulation controls. In summary, this work introduces an effective and biocompatible SNP-based co-delivery platform that enhances the immunogenicity of TLR7/8 agonist-adjuvanted subunit influenza vaccines.

9.
bioRxiv ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38496645

RESUMO

Respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) cause human respiratory diseases and are major targets for vaccine development. In this study, we designed uncleaved prefusion-closed (UFC) trimers for the fusion (F) proteins of both viruses by examining mutations critical to F metastability. For RSV, we assessed four previous prefusion F designs, including the first and second generations of DS-Cav1, SC-TM, and 847A. We then identified key mutations that can maintain prefusion F in a native-like, closed trimeric form (up to 76%) without introducing any interprotomer disulfide bond. For hMPV, we developed a stable UFC trimer with a truncated F2-F1 linkage and an interprotomer disulfide bond. Tens of UFC constructs were characterized by negative-stain electron microscopy (nsEM), x-ray crystallography (11 RSV-F and one hMPV-F structures), and antigenic profiling. Using an optimized RSV-F UFC trimer as bait, we identified three potent RSV neutralizing antibodies (NAbs) from a phage-displayed human antibody library, with a public NAb lineage targeting sites Ø and V and two cross-pneumovirus NAbs recognizing site III. In mouse immunization, rationally designed RSV-F and hMPV-F UFC trimers induced robust antibody responses with high neutralizing titers. Our study provides a foundation for future prefusion F-based RSV and hMPV vaccine development.

10.
Biochemistry ; 52(14): 2388-401, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23484952

RESUMO

The Sec machinery constitutes the major pathway for protein translocation in bacteria. SecA is thought to act as a molecular motor driving translocation of the preprotein across the membrane by repeated ATP-driven cycles of insertion and retraction at the translocon channel. SecA is predominately a dimer under physiological conditions; however, its oligomeric state during active protein translocation is still unresolved. Five SecA crystal structures have been determined, each displaying a different dimer interface, suggesting that SecA may adopt different dimer configurations. In this study, a Förster resonance energy transfer approach was utilized with nine functional monocysteine SecA mutants labeled with appropriate dyes to determine the predominant solution state dimer. Three different dye pairs allowed interprotomer distances ranging from 20 to 140 Å to be investigated. Comparison of 15 experimentally determined distances with those predicted from X-ray structures showed the greatest agreement with the Bacillus subtilis SecA antiparallel dimer structure [Hunt, J., Weinkauf, S., Henry, L., Fak, J. J., McNicholas, P., Oliver, D. B., and Deisenhfer, J. (2002) Science 297, 2018-2026]. The binding of two signal peptides to SecA was also examined to determine their effect on SecA dimer structure. We found that the SecA dimer is maintained upon peptide binding; however, the preprotein cross-linking domain (PPXD) and helical wing domain regions experience significant conformational changes, and the PPXD movement is greatly enhanced by binding of an extended signal peptide containing 19 additional residues. Modeling of an "open" antiparallel dimer structure suggests that binding of preprotein to SecA induces an activated open conformation suitable for binding to SecYEG.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Bactérias/química , Escherichia coli/química , Proteínas de Membrana Transportadoras/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cisteína/química , Cisteína/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Mutação Puntual , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Sinais Direcionadores de Proteínas , Canais de Translocação SEC , Proteínas SecA
11.
ACS Nano ; 17(23): 23545-23567, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37988765

RESUMO

The development of a cross-protective pan-influenza A vaccine remains a significant challenge. In this study, we designed and evaluated single-component self-assembling protein nanoparticles (SApNPs) presenting the conserved extracellular domain of matrix protein 2 (M2e) as vaccine candidates against influenza A viruses. The SApNP-based vaccine strategy was first validated for human M2e (hM2e) and then applied to tandem repeats of M2e from human, avian, and swine hosts (M2ex3). Vaccination with M2ex3 displayed on SApNPs demonstrated higher survival rates and less weight loss compared to the soluble M2ex3 antigen against the lethal challenges of H1N1 and H3N2 in mice. M2ex3 I3-01v9a SApNPs formulated with a squalene-based adjuvant were retained in the lymph node follicles over 8 weeks and induced long-lived germinal center reactions. Notably, a single low dose of M2ex3 I3-01v9a SApNP formulated with a potent adjuvant, either a Toll-like receptor 9 (TLR9) agonist or a stimulator of interferon genes (STING) agonist, conferred 90% protection against a lethal H1N1 challenge in mice. With the ability to induce robust and durable M2e-specific functional antibody and T cell responses, the M2ex3-presenting I3-01v9a SApNP provides a promising pan-influenza A vaccine candidate.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Nanopartículas , Infecções por Orthomyxoviridae , Animais , Camundongos , Humanos , Suínos , Vacinas contra Influenza/genética , Vírus da Influenza A Subtipo H3N2 , Proteção Cruzada , Adjuvantes Imunológicos , Infecções por Orthomyxoviridae/prevenção & controle , Camundongos Endogâmicos BALB C , Anticorpos Antivirais
12.
Biochemistry ; 49(4): 782-92, 2010 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-20025247

RESUMO

Identification of the signal peptide-binding domain within SecA ATPase is an important goal for understanding the molecular basis of SecA preprotein recognition as well as elucidating the chemo-mechanical cycle of this nanomotor during protein translocation. In this study, Forster resonance energy transfer methodology was employed to map the location of the SecA signal peptide-binding domain using a collection of functional monocysteine SecA mutants and alkaline phosphatase signal peptides labeled with appropriate donor-acceptor fluorophores. Fluorescence anisotropy measurements yielded an equilibrium binding constant of 1.4 or 10.7 muM for the alkaline phosphatase signal peptide labeled at residue 22 or 2, respectively, with SecA, and a binding stoichiometry of one signal peptide bound per SecA monomer. Binding affinity measurements performed with a monomer-biased mutant indicate that the signal peptide binds equally well to SecA monomer or dimer. Distance measurements determined for 13 SecA mutants show that the SecA signal peptide-binding domain encompasses a portion of the preprotein cross-linking domain but also includes regions of nucleotide-binding domain 1 and particularly the helical scaffold domain. The identified region lies at a multidomain interface within the heart of SecA, surrounded by and potentially responsive to domains important for binding nucleotide, mature portions of the preprotein, and the SecYEG channel. Our FRET-mapped binding domain, in contrast to the domain identified by NMR spectroscopy, includes the two-helix finger that has been shown to interact with the preprotein during translocation and lies at the entrance to the protein-conducting channel in the recently determined SecA-SecYEG structure.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Bactérias/química , Escherichia coli/enzimologia , Proteínas de Membrana Transportadoras/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína , Canais de Translocação SEC , Proteínas SecA
13.
Sci Adv ; 6(32): eabb0372, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32923611

RESUMO

Despite the therapeutic success of monoclonal antibodies (mAbs), early identification of developable mAb drug candidates with optimal manufacturability, stability, and delivery attributes remains elusive. Poor solution behavior, which manifests as high solution viscosity or opalescence, profoundly affects the developability of mAb drugs. Using a diverse dataset of 59 mAbs, including 43 approved products, and an array of molecular descriptors spanning colloidal, conformational, charge-based, hydrodynamic, and hydrophobic properties, we show that poor solution behavior is prevalent (>30%) in mAbs and is singularly predicted (>90%) by the diffusion interaction parameter (k D), a dilute-solution measure of colloidal self-interaction. No other descriptor, individually or in combination, was found to be as effective as k D. We also show that well-behaved mAbs, a substantial subset of which bear high positive charge and pI, present no disadvantages with respect to pharmacokinetics in humans. Here, we provide a systematic framework with quantitative thresholds for selecting well-behaved therapeutic mAbs during drug discovery.


Assuntos
Anticorpos Monoclonais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/uso terapêutico , Difusão , Humanos , Interações Hidrofóbicas e Hidrofílicas , Viscosidade
15.
Elife ; 62017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28346138

RESUMO

Hormones and neurotransmitters are released through fluctuating exocytotic fusion pores that can flicker open and shut multiple times. Cargo release and vesicle recycling depend on the fate of the pore, which may reseal or dilate irreversibly. Pore nucleation requires zippering between vesicle-associated v-SNAREs and target membrane t-SNAREs, but the mechanisms governing the subsequent pore dilation are not understood. Here, we probed the dilation of single fusion pores using v-SNARE-reconstituted ~23-nm-diameter discoidal nanolipoprotein particles (vNLPs) as fusion partners with cells ectopically expressing cognate, 'flipped' t-SNAREs. Pore nucleation required a minimum of two v-SNAREs per NLP face, and further increases in v-SNARE copy numbers did not affect nucleation rate. By contrast, the probability of pore dilation increased with increasing v-SNARE copies and was far from saturating at 15 v-SNARE copies per face, the NLP capacity. Our experimental and computational results suggest that SNARE availability may be pivotal in determining whether neurotransmitters or hormones are released through a transient ('kiss and run') or an irreversibly dilating pore (full fusion).


Assuntos
Exocitose , Proteínas SNARE/metabolismo , Vesículas Secretórias/metabolismo , Células HeLa , Hormônios/metabolismo , Humanos , Neurotransmissores/metabolismo
16.
Elife ; 62017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29111973

RESUMO

Hearing relies on rapid, temporally precise, and sustained neurotransmitter release at the ribbon synapses of sensory cells, the inner hair cells (IHCs). This process requires otoferlin, a six C2-domain, Ca2+-binding transmembrane protein of synaptic vesicles. To decipher the role of otoferlin in the synaptic vesicle cycle, we produced knock-in mice (OtofAla515,Ala517/Ala515,Ala517) with lower Ca2+-binding affinity of the C2C domain. The IHC ribbon synapse structure, synaptic Ca2+ currents, and otoferlin distribution were unaffected in these mutant mice, but auditory brainstem response wave-I amplitude was reduced. Lower Ca2+ sensitivity and delay of the fast and sustained components of synaptic exocytosis were revealed by membrane capacitance measurement upon modulations of intracellular Ca2+ concentration, by varying Ca2+ influx through voltage-gated Ca2+-channels or Ca2+ uncaging. Otoferlin thus functions as a Ca2+ sensor, setting the rates of primed vesicle fusion with the presynaptic plasma membrane and synaptic vesicle pool replenishment in the IHC active zone.


Assuntos
Células Ciliadas Auditivas/fisiologia , Fusão de Membrana , Proteínas de Membrana/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Sinapses/fisiologia , Vesículas Sinápticas/metabolismo , Animais , Cálcio/metabolismo , Técnicas de Introdução de Genes , Proteínas de Membrana/genética , Camundongos , Ligação Proteica , Receptores de Detecção de Cálcio/genética
17.
Sci Rep ; 6: 27287, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27264104

RESUMO

The initial, nanometer-sized connection between the plasma membrane and a hormone- or neurotransmitter-filled vesicle -the fusion pore- can flicker open and closed repeatedly before dilating or resealing irreversibly. Pore dynamics determine release and vesicle recycling kinetics, but pore properties are poorly known because biochemically defined single-pore assays are lacking. We isolated single flickering pores connecting v-SNARE-reconstituted nanodiscs to cells ectopically expressing cognate, "flipped" t-SNAREs. Conductance through single, voltage-clamped fusion pores directly reported sub-millisecond pore dynamics. Pore currents fluctuated, transiently returned to baseline multiple times, and disappeared ~6 s after initial opening, as if the fusion pore fluctuated in size, flickered, and resealed. We found that interactions between v- and t-SNARE transmembrane domains (TMDs) promote, but are not essential for pore nucleation. Surprisingly, TMD modifications designed to disrupt v- and t-SNARE TMD zippering prolonged pore lifetimes dramatically. We propose that the post-fusion geometry of the proteins contribute to pore stability.


Assuntos
Fusão Celular/métodos , Núcleo Celular/metabolismo , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Cálcio/metabolismo , Exocitose , Células HeLa , Humanos , Fusão de Membrana , Neurotransmissores , Ligação Proteica , Domínios Proteicos , Vesículas Secretórias/metabolismo
18.
J Immunol Methods ; 439: 1-7, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27659010

RESUMO

Genital infections with herpes simplex virus type 2 (HSV-2) are a source of considerable morbidity and are a health concern for newborns exposed to virus during vaginal delivery. Additionally, HSV-2 infection diminishes the integrity of the vaginal epithelium resulting in increased susceptibility of individuals to infection with other sexually transmitted pathogens. Understanding immune protection against HSV-2 primary infection and immune modulation of virus shedding events following reactivation of the virus from latency is important for the development of effective prophylactic and therapeutic vaccines. Although the murine model of HSV-2 infection is useful for understanding immunity following immunization, it is limited by the lack of spontaneous reactivation of HSV-2 from latency. Genital infection of guinea pigs with HSV-2 accurately models the disease of humans including the spontaneous reactivation of HSV-2 from latency and provides a unique opportunity to examine virus-host interactions during latency. Although the guinea pig represents an accurate model of many human infections, relatively few reagents are available to study the immunological response to infection. To analyze the cell-mediated immune response of guinea pigs at extended periods of time after establishment of HSV-2 latency, we have modified flow-cytometry based proliferation assays and IFN-γ ELISPOT assays to detect and quantify HSV-specific cell-mediated responses during latent infection of guinea pigs. Here we demonstrate that a combination of proliferation and ELISPOT assays can be used to quantify and characterize effecter function of virus-specific immune memory responses during HSV-latency.


Assuntos
ELISPOT , Citometria de Fluxo/métodos , Herpes Genital/imunologia , Herpesvirus Humano 2/imunologia , Imunidade Celular , Ativação Linfocitária , Linfócitos T/imunologia , Latência Viral , Animais , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Feminino , Cobaias , Herpes Genital/metabolismo , Herpes Genital/virologia , Herpesvirus Humano 2/patogenicidade , Interações Hospedeiro-Patógeno , Interferon gama/imunologia , Interferon gama/metabolismo , Linfócitos T/metabolismo , Linfócitos T/virologia , Fatores de Tempo , Ativação Viral
19.
PLoS One ; 10(6): e0130562, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26075398

RESUMO

Trypanosoma cruzi-induced oxidative and inflammatory responses are implicated in chagasic cardiomyopathy. In this study, we examined the therapeutic utility of a subunit vaccine against T. cruzi and determined if glutathione peroxidase (GPx1, antioxidant) protects the heart from chagasic pathogenesis. C57BL/6 mice (wild-type (WT) and GPx1 transgenic (GPxtg) were infected with T. cruzi and at 45 days post-infection (dpi), immunized with TcG2/TcG4 vaccine delivered by a DNA-prime/Protein-boost (D/P) approach. The plasma and tissue-sections were analyzed on 150 dpi for parasite burden, inflammatory and oxidative stress markers, inflammatory infiltrate and fibrosis. WT mice infected with T. cruzi had significantly more blood and tissue parasite burden compared with infected/GPxtg mice (n = 5-8, p<0.01). Therapeutic vaccination provided >15-fold reduction in blood and tissue parasites in both WT and GPxtg mice. The increase in plasma levels of myeloperoxidase (MPO, 24.7%) and nitrite (iNOS activity, 45%) was associated with myocardial increase in oxidant levels (3-4-fold) and non-responsive antioxidant status in chagasic/WT mice; and these responses were not controlled after vaccination (n = 5-7). The GPxtg mice were better equipped than the WT mice in controlling T. cruzi-induced inflammatory and oxidative stress markers. Extensive myocardial and skeletal tissue inflammation noted in chagasic/WT mice, was significantly more compared with chagasic/GPxtg mice (n = 4-6, p<0.05). Vaccination was equally effective in reducing the chronic inflammatory infiltrate in the heart and skeletal tissue of infected WT and GPxtg mice (n = 6, p<0.05). Hypertrophy (increased BNP and ANP mRNA) and fibrosis (increased collagen) of the heart were extensively present in chronically-infected WT and GPxtg mice and notably decreased after therapeutic vaccination. We conclude the therapeutic delivery of D/P vaccine was effective in arresting the chronic parasite persistence and chagasic pathology; and GPx1 over-expression provided additive benefits in reducing the parasite burden, inflammatory/oxidative stress and cardiac remodeling in Chagas disease.


Assuntos
Cardiomiopatia Chagásica/terapia , Doença de Chagas/imunologia , Glutationa Peroxidase/metabolismo , Vacinas Protozoárias/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Animais , Antioxidantes/metabolismo , Linfócitos T CD8-Positivos/imunologia , Cardiomiopatia Chagásica/imunologia , Cardiomiopatia Chagásica/parasitologia , Doença de Chagas/parasitologia , Doença de Chagas/prevenção & controle , Modelos Animais de Doenças , Glutationa Peroxidase/biossíntese , Inflamação/imunologia , Inflamação/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miocárdio/patologia , Estresse Oxidativo/imunologia , Espécies Reativas de Oxigênio/metabolismo , Trypanosoma cruzi/imunologia , Vacinação , Glutationa Peroxidase GPX1
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa