Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Nature ; 629(8010): 184-192, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38600378

RESUMO

Glucocorticoids represent the mainstay of therapy for a broad spectrum of immune-mediated inflammatory diseases. However, the molecular mechanisms underlying their anti-inflammatory mode of action have remained incompletely understood1. Here we show that the anti-inflammatory properties of glucocorticoids involve reprogramming of the mitochondrial metabolism of macrophages, resulting in increased and sustained production of the anti-inflammatory metabolite itaconate and consequent inhibition of the inflammatory response. The glucocorticoid receptor interacts with parts of the pyruvate dehydrogenase complex whereby glucocorticoids provoke an increase in activity and enable an accelerated and paradoxical flux of the tricarboxylic acid (TCA) cycle in otherwise pro-inflammatory macrophages. This glucocorticoid-mediated rewiring of mitochondrial metabolism potentiates TCA-cycle-dependent production of itaconate throughout the inflammatory response, thereby interfering with the production of pro-inflammatory cytokines. By contrast, artificial blocking of the TCA cycle or genetic deficiency in aconitate decarboxylase 1, the rate-limiting enzyme of itaconate synthesis, interferes with the anti-inflammatory effects of glucocorticoids and, accordingly, abrogates their beneficial effects during a diverse range of preclinical models of immune-mediated inflammatory diseases. Our findings provide important insights into the anti-inflammatory properties of glucocorticoids and have substantial implications for the design of new classes of anti-inflammatory drugs.


Assuntos
Anti-Inflamatórios , Glucocorticoides , Inflamação , Macrófagos , Mitocôndrias , Succinatos , Animais , Feminino , Humanos , Masculino , Camundongos , Anti-Inflamatórios/farmacologia , Carboxiliases/metabolismo , Carboxiliases/antagonistas & inibidores , Ciclo do Ácido Cítrico/efeitos dos fármacos , Ciclo do Ácido Cítrico/genética , Citocinas/imunologia , Citocinas/metabolismo , Glucocorticoides/farmacologia , Glucocorticoides/metabolismo , Hidroliases/deficiência , Hidroliases/genética , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Complexo Piruvato Desidrogenase/metabolismo , Receptores de Glucocorticoides/metabolismo , Succinatos/metabolismo , Ativação Enzimática/efeitos dos fármacos
2.
Ann Rheum Dis ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38986577

RESUMO

OBJECTIVES: Bone remodelling is a highly dynamic process dependent on the precise coordination of osteoblasts and haematopoietic-cell derived osteoclasts. Changes in core metabolic pathways during osteoclastogenesis, however, are largely unexplored and it is unknown whether and how these processes are involved in bone homeostasis. METHODS: We metabolically and transcriptionally profiled cells during osteoclast and osteoblast generation. Individual gene expression was characterised by quantitative PCR and western blot. Osteoblast function was assessed by Alizarin red staining. immunoresponsive gene 1 (Irg1)-deficient mice were used in various inflammatory or non-inflammatory models of bone loss. Tissue gene expression was analysed by RNA in situ hybridisation. RESULTS: We show that during differentiation preosteoclasts rearrange their tricarboxylic acid cycle, a process crucially depending on both glucose and glutamine. This rearrangement is characterised by the induction of Irg1 and production of itaconate, which accumulates intracellularly and extracellularly. While the IRG1-itaconate axis is dispensable for osteoclast generation in vitro and in vivo, we demonstrate that itaconate stimulates osteoblasts by accelerating osteogenic differentiation in both human and murine cells. This enhanced osteogenic differentiation is accompanied by reduced proliferation and altered metabolism. Additionally, supplementation of itaconate increases bone formation by boosting osteoblast activity in mice. Conversely, Irg1-deficient mice exhibit decreased bone mass and have reduced osteoproliferative lesions in experimental arthritis. CONCLUSION: In summary, we identify itaconate, generated as a result of the metabolic rewiring during osteoclast differentiation, as a previously unrecognised regulator of osteoblasts.

3.
Int J Mol Sci ; 22(8)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923700

RESUMO

Hydroxyapatite- or calcium phosphate-coated iron oxide nanoparticles have a high potential for use in many biomedical applications. In this study, a co-precipitation method for the synthesis of hydroxyapatite-coated nanoparticles (SPIONHAp), was used. The produced nanoparticles have been characterized by dynamic light scattering, X-ray diffraction, vibrating sample magnetometry, Fourier transform infrared spectrometry, atomic emission spectroscopy, scanning electron microscopy, transmission electron microscopy, selected area diffraction, and energy-dispersive X-ray spectroscopy. The results showed a successful synthesis of 190 nm sized particles and their stable coating, resulting in SPIONHAp. Potential cytotoxic effects of SPIONHAp on EL4, THP-1, and Jurkat cells were tested, showing only a minor effect on cell viability at the highest tested concentration (400 µg Fe/mL). The results further showed that hydroxyapatite-coated SPIONs can induce minor TNF-α and IL-6 release by murine macrophages at a concentration of 100 µg Fe/mL. To investigate if and how such particles interact with other substances that modulate the immune response, SPIONHAp-treated macrophages were incubated with LPS (lipopolysaccharides) and dexamethasone. We found that cytokine release in response to these potent pro- and anti-inflammatory agents was modulated in the presence of SPIONHAp. Knowledge of this behavior is important for the management of inflammatory processes following in vivo applications of this type of SPIONs.


Assuntos
Interleucina-6/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro/química , Fator de Necrose Tumoral alfa/metabolismo , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células Cultivadas , Durapatita/química , Humanos , Células Jurkat , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Células THP-1
4.
Infect Immun ; 88(3)2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31818962

RESUMO

Streptococcus suis is an important porcine bacterial pathogen and zoonotic agent responsible for sudden death, septic shock, and meningitis. These pathologies are a consequence of elevated bacterial replication leading to exacerbated and uncontrolled inflammation, a hallmark of the S. suis systemic and central nervous system (CNS) infections. Monocytes and neutrophils are immune cells involved in various functions, including proinflammatory mediator production. Moreover, monocytes are composed of two main subsets: shorter-lived inflammatory monocytes and longer-lived patrolling monocytes. However, regardless of their presence in blood and the fact that S. suis-induced meningitis is characterized by infiltration of monocytes and neutrophils into the CNS, their role during the S. suis systemic and CNS diseases remains unknown. Consequently, we hypothesized that monocytes and neutrophils participate in S. suis infection via bacterial clearance and inflammation. Results demonstrated that inflammatory monocytes and neutrophils regulate S. suis-induced systemic disease via their role in inflammation required for bacterial burden control. In the CNS, inflammatory monocytes contributed to exacerbation of S. suis-induced local inflammation, while neutrophils participated in bacterial burden control. However, development of clinical CNS disease was independent of both cell types, indicating that resident immune cells are mostly responsible for S. suis-induced CNS inflammation and clinical disease and that inflammatory monocyte and neutrophil infiltration is a consequence of the induced inflammation. In contrast, the implication of patrolling monocytes was minimal throughout the S. suis infection. Consequently, this study demonstrates that while inflammatory monocytes and neutrophils modulate S. suis-induced systemic inflammation and disease, they are not critical for CNS disease development.


Assuntos
Monócitos/imunologia , Neutrófilos/imunologia , Infecções Estreptocócicas/imunologia , Streptococcus suis/imunologia , Animais , Modelos Animais de Doenças , Inflamação/imunologia , Camundongos , Infecções Estreptocócicas/microbiologia
5.
Infect Immun ; 88(10)2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747605

RESUMO

Streptococcus suis is an encapsulated bacterium and one of the most important swine pathogens and a zoonotic agent for which no effective vaccine exists. Bacterial capsular polysaccharides (CPSs) are poorly immunogenic, but anti-CPS antibodies are essential to the host defense against encapsulated bacteria. In addition to the previously known serotypes 2 and 14, which are nonimmunogenic, we have recently purified and described the CPS structures for serotypes 1, 1/2, 3, 7, 8, and 9. Here, we aimed to elucidate how these new structurally diverse CPSs interact with the immune system to generate anti-CPS antibody responses. CPS-stimulated dendritic cells produced significant levels of C-C motif chemokine ligand 3 (CCL3), partially via Toll-like receptor 2 (TLR2)- and myeloid differentiation factor 88-dependent pathways, and CCL2, via TLR-independent mechanisms. Mice immunized with purified serotype 3 CPS adjuvanted with TiterMax Gold produced an opsonizing IgG response, whereas other CPSs or adjuvants were negative. Mice hyperimmunized with heat-killed S. suis serotypes 3 and 9 both produced anti-CPS type 1 IgGs, whereas serotypes 7 and 8 remained negative. Also, mice infected with sublethal doses of S. suis serotype 3 produced primary anti-CPS IgM and IgG responses, of which only IgM were boosted after a secondary infection. In contrast, mice sublethally infected with S. suis serotype 9 produced weak anti-CPS IgM and IgG responses following a secondary infection. This study provides important information on the divergent evolution of CPS serotypes with highly different structural and/or biochemical properties within S. suis and their interaction with the immune system.


Assuntos
Antígenos de Bactérias/imunologia , Cápsulas Bacterianas/imunologia , Imunoglobulina G/imunologia , Polissacarídeos Bacterianos/imunologia , Infecções Estreptocócicas/imunologia , Streptococcus suis/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Antígenos de Bactérias/administração & dosagem , Antígenos de Bactérias/química , Cápsulas Bacterianas/genética , Quimiocinas/imunologia , Células Dendríticas/imunologia , Imunização , Imunoglobulina M/imunologia , Camundongos , Fator 88 de Diferenciação Mieloide/imunologia , Polissacarídeos Bacterianos/administração & dosagem , Polissacarídeos Bacterianos/química , Sorogrupo , Infecções Estreptocócicas/microbiologia , Streptococcus suis/genética , Receptor 2 Toll-Like/imunologia
6.
Int Immunol ; 31(11): 697-714, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30944920

RESUMO

Streptococcus suis serotype 2 is an important porcine bacterial pathogen and a zoonotic agent responsible for sudden death, septic shock and meningitis, with exacerbated inflammation being a hallmark of the systemic and central nervous system (CNS) infections. However, S. suis serotype 2 strains are genetically and phenotypically heterogeneous, being composed of a multitude of sequence types (STs) whose virulence greatly varies. Yet, most studies have used 'classical' virulent Eurasian ST1 or ST7 strains, even though ST25 and ST28 strains account for most isolates in North America. While recognition of S. suis by innate immune cells has been associated with the myeloid differentiation primary response 88 (MyD88)-dependent Toll-like receptor (TLR) pathway in vitro, particularly surface-associated TLR2, little information is available regarding its role in vivo. This study demonstrates for the first time a differential role of MyD88 signaling in S. suis-induced systemic and CNS diseases, regardless of strain background diversity. The MyD88-dependent pathway is critical for the development of systemic disease via its role in inflammation, which subsequently controls bacterial burden. However, and differently from what has been described in vitro, TLR2 and TLR4 individually do not contribute to systemic disease, suggesting possible compensation in their absence and/or a collaborative role with other MyD88-dependent TLRs. On the other hand, CNS disease does not necessarily require MyD88 signaling and, consequently, neither TLR2 nor TLR4, suggesting a partial implication of other pathways. Finally, regardless of its notable heterogeneity, recognition of S. suis serotype 2 appears to be similar, indicating that recognized components are conserved motifs.


Assuntos
Doenças do Sistema Nervoso Central/imunologia , Fator 88 de Diferenciação Mieloide/imunologia , Streptococcus suis/imunologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/imunologia
7.
J Biol Chem ; 293(31): 12011-12025, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29884769

RESUMO

Streptococcus suis serotype 2 is an important porcine and human pathogen. Lipoteichoic acid (LTA) from S. suis has been suggested to contribute to its virulence, and absence of d-alanylation from the S. suis LTA is associated with increased susceptibility to cationic antimicrobial peptides. Here, using high-resolution NMR spectroscopy and MS analyses, we characterized the LTA structures from three S. suis serotype 2 strains differing in virulence, sequence type (ST), and geographical origin. Our analyses revealed that these strains possess-in addition to the typical type I LTA present in other streptococci-a second, mixed-type series of LTA molecules of high complexity. We observed a ST-specific difference in the incorporation of glycosyl residues into these mixed-type LTAs. We found that strains P1/7 (ST1, high virulence) and SC84 (ST7, very high virulence) can attach a 1,2-linked α-d-Glcp residue as branching substituent to an α-d-Glcp that is 1,3-linked to glycerol phosphate moieties and that is not present in strain 89-1591 (ST25, intermediate virulence). In contrast, the latter strain could glycosylate its LTA at the glycerol O-2 position, which was not observed in the other two strains. Using LTA preparations from WT strains and from mutants with an inactivated prolipoprotein diacylglyceryl transferase, resulting in deficient lipoprotein acylation, we show that S. suis LTAs alone do not induce Toll-like receptor 2-dependent pro-inflammatory mediator production from dendritic cells. In summary, our study reveals an unexpected complexity of LTAs present in three S. suis serotype 2 strains differing in genetic background and virulence.


Assuntos
Adjuvantes Imunológicos/química , Células Dendríticas/efeitos dos fármacos , Lipopolissacarídeos/química , Streptococcus suis/química , Ácidos Teicoicos/química , Transferases/deficiência , Adjuvantes Imunológicos/isolamento & purificação , Adjuvantes Imunológicos/farmacologia , Animais , Configuração de Carboidratos , Sequência de Carboidratos , Quimiocina CCL3/genética , Quimiocina CCL3/imunologia , Quimiocina CXCL1/genética , Quimiocina CXCL1/imunologia , Células Dendríticas/citologia , Células Dendríticas/imunologia , Expressão Gênica , Glicosilação , Interleucina-6/genética , Interleucina-6/imunologia , Lipopolissacarídeos/isolamento & purificação , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Éteres Fosfolipídicos/química , Cultura Primária de Células , Sorogrupo , Streptococcus suis/classificação , Streptococcus suis/patogenicidade , Relação Estrutura-Atividade , Ácidos Teicoicos/isolamento & purificação , Ácidos Teicoicos/farmacologia , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia , Transferases/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Virulência
8.
PLoS Pathog ; 13(10): e1006647, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28968468

RESUMO

Interferon regulatory factor-8 (IRF-8) is critical for Th1 cell differentiation and negatively regulates myeloid cell development including myeloid-derived suppressor cells (MDSC). MDSC expand during infection with various pathogens including the gastrointestinal (GI) nematode Heligmosomoides polygyrus bakeri (Hpb). We investigated if IRF-8 contributes to Th2 immunity to Hpb infection. Irf8 expression was down-regulated in MDSC from Hpb-infected C57BL/6 (B6) mice. IRF-8 deficient Irf8-/- and BXH-2 mice had significantly higher adult worm burdens than B6 mice after primary or challenge Hpb infection. During primary infection, MDSC expanded to a significantly greater extent in mesenteric lymph nodes (MLN) and spleens of Irf8-/- and BXH-2 than B6 mice. CD4+GATA3+ T cells numbers were comparable in MLN of infected B6 and IRF-8 deficient mice, but MLN cells from infected IRF-8 deficient mice secreted significantly less parasite-specific IL-4 ex vivo. The numbers of alternatively activated macrophages in MLN and serum levels of Hpb-specific IgG1 and IgE were also significantly less in infected Irf8-/- than B6 mice. The frequencies of antigen-experienced CD4+CD11ahiCD49dhi cells that were CD44hiCD62L- were similar in MLN of infected Irf8-/- and B6 mice, but the proportions of CD4+GATA3+ and CD4+IL-4+ T cells were lower in infected Irf8-/- mice. CD11b+Gr1+ cells from naïve or infected Irf8-/- mice suppressed CD4+ T cell proliferation and parasite-specific IL-4 secretion in vitro albeit less efficiently than B6 mice. Surprisingly, there were significantly more CD4+ T cells in infected Irf8-/- mice, with a higher frequency of CD4+CD25+Foxp3+ T (Tregs) cells and significantly higher numbers of Tregs than B6 mice. In vivo depletion of MDSC and/or Tregs in Irf8-/- mice did not affect adult worm burdens, but Treg depletion resulted in higher egg production and enhanced parasite-specific IL-5, IL-13, and IL-6 secretion ex vivo. Our data thus provide a previously unrecognized role for IRF-8 in Th2 immunity to a GI nematode.


Assuntos
Gastroenteropatias/imunologia , Fatores Reguladores de Interferon/imunologia , Células Supressoras Mieloides/imunologia , Infecções por Nematoides/imunologia , Nematospiroides dubius/imunologia , Células Th2/imunologia , Animais , Células Cultivadas , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Fatores Reguladores de Interferon/efeitos dos fármacos , Fatores Reguladores de Interferon/genética , Interleucina-4/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T Reguladores/imunologia
9.
Vet Res ; 50(1): 52, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31262357

RESUMO

Streptococcus suis serotype 2 is an important porcine pathogen and zoonotic agent causing sudden death, septic shock and meningitis, with exacerbated inflammation being a hallmark of the infection. A rapid, effective and balanced innate immune response against S. suis is critical to control bacterial growth without causing excessive inflammation. Even though interleukin (IL)-1 is one of the most potent and earliest pro-inflammatory mediators produced, its role in the S. suis pathogenesis has not been studied. We demonstrated that a classical virulent European sequence type (ST) 1 strain and the highly virulent ST7 strain induce important levels of IL-1 in systemic organs. Moreover, bone marrow-derived dendritic cells and macrophages contribute to its production, with the ST7 strain inducing higher levels. To better understand the underlying mechanisms involved, different cellular pathways were studied. Independently of the strain, IL-1ß production required MyD88 and involved recognition via TLR2 and possibly TLR7 and TLR9. This suggests that the recognized bacterial components are similar and conserved between strains. However, very high levels of the pore-forming toxin suilysin, produced only by the ST7 strain, are required for efficient maturation of pro-IL-1ß via activation of different inflammasomes resulting from pore formation and ion efflux. Using IL-1R-/- mice, we demonstrated that IL-1 signaling plays a beneficial role during S. suis systemic infection by modulating the inflammation required to control and clear bacterial burden, thus promoting host survival. Beyond a certain threshold, however, S. suis-induced inflammation cannot be counterbalanced by this signaling, making it difficult to discriminate its role.


Assuntos
Imunidade Inata , Inflamação/veterinária , Interleucina-1/metabolismo , Infecções Estreptocócicas/veterinária , Streptococcus suis/fisiologia , Doenças dos Suínos/microbiologia , Animais , Modelos Animais de Doenças , Feminino , Inflamação/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sorogrupo , Transdução de Sinais , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Suínos , Doenças dos Suínos/imunologia
10.
BMC Vet Res ; 15(1): 448, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31823789

RESUMO

BACKGROUND: Streptococcus suis is a major swine pathogen causing arthritis, meningitis and sudden death in post-weaning piglets and is also a zoonotic agent. S. suis comprises 35 different serotypes of which the serotype 2 is the most prevalent in both pigs and humans. In the absence of commercial vaccines, bacterins (mostly autogenous), are used in the field, with controversial results. In the past years, the focus has turned towards the development of sub-unit vaccine candidates. However, published results are sometimes contradictory regarding the protective effect of a same candidate. Moreover, the adjuvant used may significantly influence the protective capacity of a given antigen. This study focused on two protective candidates, the dipeptidyl peptidase IV (DPPIV) and the enolase (SsEno). Both proteins are involved in S. suis pathogenesis, and while contradictory protection results have been obtained with SsEno in the past, no data on the protective capacity of DPPIV was available. RESULTS: Results showed that among all the field strains tested, 86 and 88% were positive for the expression of the SsEno and DPPIV proteins, respectively, suggesting that they are widely expressed by strains of different serotypes. However, no protection was obtained after two vaccine doses in a CD-1 mouse model of infection, regardless of the use of four different adjuvants. Even though no protection was obtained, significant amounts of antibodies were produced against both antigens, and this regardless of the adjuvant used. CONCLUSIONS: Taken together, these results demonstrate that S. suis DPPIV and SsEno are probably not good vaccine candidates, at least not in the conditions evaluated in this study. Further studies in the natural host (pig) should still be carried out. Moreover, this work highlights the importance of confirming results obtained by different research groups.


Assuntos
Dipeptidil Peptidase 4 , Fosfopiruvato Hidratase , Streptococcus suis/imunologia , Vacinas de Subunidades Antigênicas/farmacologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Animais , Anticorpos Antibacterianos , Modelos Animais de Doenças , Camundongos , Subunidades Proteicas/farmacologia , Infecções Estreptocócicas/imunologia , Vacinas Estreptocócicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia
11.
Vet Res ; 49(1): 109, 2018 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-30373658

RESUMO

Streptococcus suis is a swine pathogen and zoonotic agent responsible for meningitis and septic shock. Although several putative virulence factors have been described, the initial steps of the S. suis pathogenesis remain poorly understood. While controversial results have been reported for a S. suis serotype 2 zinc metalloprotease (Zmp) regarding its IgA protease activity, recent phylogenetic analyses suggested that this protein is homologous to the ZmpC of Streptococcus pneumoniae, which is not an IgA protease. Based on the previously described functions of metalloproteases (including IgA protease and ZmpC), different experiments were carried out to study the activities of that of S. suis serotype 2. First, results showed that S. suis, as well as the recombinant Zmp, were unable to cleave human IgA1, confirming lack of IgA protease activity. Similarly, S. suis was unable to cleave P-selectin glycoprotein ligand-1 and to activate matrix metalloprotease 9, at least under the conditions tested. However, S. suis was able to partially cleave mucin 16 and syndecan-1 ectodomains. Experiments carried out with an isogenic Δzmp mutant showed that the Zmp protein was partially involved in such activities. The absence of a functional Zmp protein did not affect the ability of S. suis to adhere to porcine bronchial epithelial cells in vitro, or to colonize the upper respiratory tract of pigs in vivo. Taken together, our results show that S. suis serotype 2 Zmp is not a critical virulence factor and highlight the importance of independently confirming results on S. suis virulence by different teams.


Assuntos
Metaloendopeptidases/metabolismo , Streptococcus suis/enzimologia , Animais , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Metaloendopeptidases/genética , Camundongos , Domínios Proteicos , Serina Endopeptidases/metabolismo , Sorogrupo , Infecções Estreptocócicas/microbiologia , Streptococcus suis/genética , Streptococcus suis/patogenicidade , Virulência
12.
Vet Res ; 48(1): 39, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28705175

RESUMO

Streptococcus suis is one of the most important post-weaning porcine bacterial pathogens worldwide. The serotypes 2 and 9 are often considered the most virulent and prevalent serotypes involved in swine infections, especially in Europe. However, knowledge of the bacterial factors involved in the first steps of the pathogenesis of the infection remains scarce. In several pathogenic streptococci, expression of multimodal adhesion proteins known as antigen I/II (AgI/II) have been linked with persistence in the upper respiratory tract and the oral cavity, as well as with bacterial dissemination. Herein, we report expression of these immunostimulatory factors by S. suis serotype 2 and 9 strains and that AgI/II-encoding genes are carried by integrative and conjugative elements. Using mutagenesis and different in vitro assays, we demonstrate that the contribution of AgI/II to the virulence of the serotype 2 strain used herein appears to be modest. In contrast, data demonstrate that the serotype 9 AgI/II participates in self-aggregation, induces salivary glycoprotein 340-related aggregation, contributes to biofilm formation and increased strain resistance to low pH, as well as in bacterial adhesion to extracellular matrix proteins and epithelial cells. Moreover, the use of a porcine infection model revealed that AgI/II contributes to colonization of the upper respiratory tract of pigs. Taken together, these findings suggest that surface exposed AgI/II likely play a key role in the first steps of the pathogenesis of the S. suis serotype 9 infection.


Assuntos
Infecções Estreptocócicas/veterinária , Streptococcus suis/patogenicidade , Doenças dos Suínos/microbiologia , Animais , Antígenos de Bactérias/metabolismo , Antígenos de Bactérias/fisiologia , Aderência Bacteriana/fisiologia , Infecções Estreptocócicas/microbiologia , Suínos
14.
Front Immunol ; 15: 1403789, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39156897

RESUMO

Streptococcus suis causes diseases in pigs and has emerged as a zoonotic agent. When infected, the host develops an exacerbated inflammation that can lead to septic shock and meningitis. Although neutrophils greatly infiltrate the lesions, their dynamics during S. suis infection remain poorly described. Moreover, very few studies reported on the production and role of a key factor in the regulation of neutrophils: the colony-stimulating granulocyte factor (G-CSF). In this study, we characterized the G-CSF-neutrophil axis in the pathogenesis of S. suis induced disease. Using a mouse model of S. suis infection, we first evaluated the recruitment of neutrophils and their activation profile by flow cytometry. We found that infection provokes a massive neutrophil recruitment from the bone marrow to the blood and spleen. In both compartments, neutrophils displayed multiple activation markers. In parallel, we observed high systemic levels of G-CSF, with a peak of production coinciding with that of neutrophil recruitment. We then neutralized the effects of G-CSF and highlighted its role in the release of neutrophils from the bone marrow to the blood. However, it did not affect bacteremia nor the cytokine storm induced by S. suis. In conclusion, systemic G-CSF induces the release of neutrophils from the bone marrow to the blood, but its role in inflammation or bacterial clearance seems to be compensated by unknown factors. A better understanding of the role of neutrophils and inflammatory mediators could lead to better strategies for controlling the infection caused by S. suis.


Assuntos
Fator Estimulador de Colônias de Granulócitos , Infiltração de Neutrófilos , Neutrófilos , Infecções Estreptocócicas , Streptococcus suis , Streptococcus suis/imunologia , Animais , Fator Estimulador de Colônias de Granulócitos/metabolismo , Infecções Estreptocócicas/imunologia , Camundongos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Infiltração de Neutrófilos/imunologia , Modelos Animais de Doenças , Feminino , Camundongos Endogâmicos C57BL
15.
Nat Med ; 30(6): 1593-1601, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38671240

RESUMO

Bispecific T cell engagers (BiTEs) kill B cells by engaging T cells. BiTEs are highly effective in acute lymphoblastic leukemia. Here we treated six patients with multidrug-resistant rheumatoid arthritis (RA) with the CD19xCD3 BiTE blinatumomab under compassionate use. Low doses of blinatumomab led to B cell depletion and concomitant decrease of T cells, documenting their engager function. Treatment was safe, with brief increase in body temperature and acute phase proteins during first infusion but no signs of clinically relevant cytokine-release syndrome. Blinatumomab led to a rapid decline in RA clinical disease activity in all patients, improved synovitis in ultrasound and FAPI-PET-CT and reduced autoantibodies. High-dimensional flow cytometry analysis of B cells documented an immune reset with depletion of activated memory B cells, which were replaced by nonclass-switched IgD-positive naïve B cells. Together, these data suggest the feasibility and potential for BiTEs to treat RA. This approach warrants further exploration on other B-cell-mediated autoimmune diseases.


Assuntos
Anticorpos Biespecíficos , Artrite Reumatoide , Linfócitos B , Linfócitos T , Humanos , Artrite Reumatoide/imunologia , Artrite Reumatoide/tratamento farmacológico , Anticorpos Biespecíficos/uso terapêutico , Linfócitos T/imunologia , Feminino , Linfócitos B/imunologia , Masculino , Pessoa de Meia-Idade , Antígenos CD19/imunologia , Idoso , Adulto , Complexo CD3/imunologia
16.
Front Immunol ; 14: 1293828, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162675

RESUMO

Alterations in macrophage (Mφ) polarization, function, and metabolic signature can foster development of chronic diseases, such as autoimmunity or fibrotic tissue remodeling. Thus, identification of novel therapeutic agents that modulate human Mφ biology is crucial for treatment of such conditions. Herein, we demonstrate that the soluble CD83 (sCD83) protein induces pro-resolving features in human monocyte-derived Mφ biology. We show that sCD83 strikingly increases the expression of inhibitory molecules including ILT-2 (immunoglobulin-like transcript 2), ILT-4, ILT-5, and CD163, whereas activation markers, such as MHC-II and MSR-1, were significantly downregulated. This goes along with a decreased capacity to stimulate alloreactive T cells in mixed lymphocyte reaction (MLR) assays. Bulk RNA sequencing and pathway analyses revealed that sCD83 downregulates pathways associated with pro-inflammatory, classically activated Mφ (CAM) differentiation including HIF-1A, IL-6, and cytokine storm, whereas pathways related to alternative Mφ activation and liver X receptor were significantly induced. By using the LXR pathway antagonist GSK2033, we show that transcription of specific genes (e.g., PPARG, ABCA1, ABCG1, CD36) induced by sCD83 is dependent on LXR activation. In summary, we herein reveal for the first time mechanistic insights into the modulation of human Mφ biology by sCD83, which is a further crucial preclinical study for the establishment of sCD83 as a new therapeutical agent to treat inflammatory conditions.


Assuntos
Antígeno CD83 , Macrófagos , Linfócitos T , Humanos , Diferenciação Celular , Fenótipo
17.
Microorganisms ; 9(11)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34835511

RESUMO

Streptococcus suis serotype 2 is an important porcine bacterial pathogen associated with multiple pathologies in piglets. Bacterial lipoproteins (LPPs) have been described as playing important roles in the pathogenesis of the infection of other Gram-positive bacteria as adhesins, pro-inflammatory cell activators and/or virulence factors. In the current study, we aimed to evaluate the role of the prolipoprotein diacylglyceryl transferase (Lgt) and lipoprotein signal peptidase (Lsp) enzymes, which are responsible for LPP maturation, on the pathogenesis of the infection caused by two different sequence types (STs) of S. suis serotype 2 strains (virulent ST1 and highly virulent ST7). Through the use of isogenic Δlgt, Δlsp and double Δlgt/Δlsp mutants, it was shown that lack of these enzymes did not influence S. suis adhesion/invasion to porcine respiratory epithelial cells. However, in the absence of the Lsp and/or Lgt, a significant reduction in the capacity of S. suis to activate phagocytic cells and induce pro-inflammatory mediators (in vitro and in vivo) was observed. In general, results obtained with the double mutant did not differ in comparison to single mutants, indicating lack of an additive effect. Finally, our data suggest that these enzymes play a differential role in virulence, depending on the genetic background of the strain and being more important for the highly virulent ST7 strain.

18.
Sci Rep ; 11(1): 6513, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33753801

RESUMO

The capsular polysaccharide (CPS) of Streptococcus suis defines various serotypes based on its composition and structure. Though serotype switching has been suggested to occur between S. suis strains, its impact on pathogenicity and virulence remains unknown. Herein, we experimentally generated S. suis serotype-switched mutants from a serotype 2 strain that express the serotype 3, 4, 7, 8, 9, or 14 CPS. The effects of serotype switching were then investigated with regards to classical properties conferred by presence of the serotype 2 CPS, including adhesion to/invasion of epithelial cells, resistance to phagocytosis by macrophages, killing by whole blood, dendritic cell-derived pro-inflammatory mediator production and virulence using mouse and porcine infection models. Results demonstrated that these properties on host cell interactions were differentially modulated depending on the switched serotypes, although some different mutations other than loci of CPS-related genes were found in each the serotype-switched mutant. Among the serotype-switched mutants, the mutant expressing the serotype 8 CPS was hyper-virulent, whereas mutants expressing the serotype 3 or 4 CPSs had reduced virulence. By contrast, switching to serotype 7, 9, or 14 CPSs had little to no effect. These findings suggest that serotype switching can drastically alter S. suis virulence and host cell interactions.


Assuntos
Cápsulas Bacterianas/imunologia , Interações Hospedeiro-Patógeno , Sorogrupo , Streptococcus suis/genética , Animais , Cápsulas Bacterianas/genética , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Feminino , Macrófagos/imunologia , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Streptococcus suis/imunologia , Streptococcus suis/patogenicidade , Virulência/genética
19.
Pathogens ; 9(2)2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32098284

RESUMO

Streptococcus suis serotype 2 is an important porcine bacterial pathogen and zoonotic agent causing sudden death, septic shock and meningitis. These pathologies are the consequence of an exacerbated inflammatory response composed of various mediators including interleukin (IL)-1ß. Elevated levels of the toxin suilysin (SLY) were demonstrated to play a key role in S. suis-induced IL-1ß production. However, 95% of serotype 2 strains isolated from diseased pigs in North America, many of which are virulent, do not produce SLY. In this study, we demonstrated that SLY-negative S. suis induces elevated levels of IL-1ß in systemic organs, with dendritic cells contributing to this production. SLY-negative S. suis-induced IL-1ß production requires MyD88 and TLR2 following recognition of lipoproteins. However, the higher internalization rate of the SLY-negative strain results in intracellularly located DNA being recognized by the AIM2 inflammasome, which promotes IL-1ß production. Finally, the role of IL-1 in host survival during the S. suis systemic infection is beneficial and conserved, regardless of SLY production, via modulation of the inflammation required to control bacterial burden. In conclusion, this study demonstrates that SLY is not required for S. suis-induced IL-1ß production.

20.
Immunobiology ; 225(4): 151979, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32747024

RESUMO

Streptococcus suis serotype 2 is an important porcine bacterial pathogen and emerging zoonotic agent. Infections induce an exacerbated inflammation that can result in sudden death (septic shock) and meningitis. Though neutrophilic leukocytosis characterizes S. suis infection, the mediators involved are poorly understood. Among them, granulocyte-colony stimulating factor (G-CSF), a pro-inflammatory cytokine, triggers proliferation of neutrophil progenitors and neutrophil mobilization. However, the systemic production of G-CSF induced during S. suis infection, the cell types involved, and the underlying mechanisms remain unknown. In a S. suis serotype 2 mouse model of systemic infection, plasma levels of G-CSF rapidly increased after infection. S. suis activation of DCs and macrophages resulted in high (> 1000 pg/mL) and comparable production levels of G-CSF, as measured by ELISA. By using mutant strains deficient in capsular polysaccharide (CPS) or lipoprotein maturation in combination with purified lipoteichoic acid (LTA) from the latter mutant strain, it was showed that G-CSF production is mainly mediated by S. suis lipoproteins. The Toll-like receptor (TLR) pathway via myeloid differentiation primary response 88 (MyD88) is required for G-CSF production by DCs and macrophages following S. suis activation, with a partial involvement of TLR2. On the other hand, TLR2-independant G-CSF production induced by S. suis requires internalization and bacterial DNA might play a role in this pathway. Finally, these signals activated nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways leading to G-CSF production. In conclusion, this study demonstrated for the first time that S. suis induces G-CSF production in vivo and DCs and macrophages are key cellular sources of this cytokine mediator, mainly via the binding of lipoproteins to TLR2. The CPS significantly reduced this activation, confirming the powerful role of this component in S. suis virulence. As such, this study contributes to better understand how DCs and macrophages produce G-CSF in response to S. suis, and potentially to other streptococci.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Fator Estimulador de Colônias de Granulócitos/biossíntese , Macrófagos/imunologia , Macrófagos/metabolismo , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Streptococcus suis/imunologia , Animais , Biomarcadores , Citocinas/metabolismo , Modelos Animais de Doenças , Fator Estimulador de Colônias de Granulócitos/sangue , Interações Hospedeiro-Patógeno , Camundongos , Transdução de Sinais , Streptococcus suis/classificação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa