Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Int J Mol Sci ; 22(11)2021 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-34071104

RESUMO

Dorsal root ganglia (DRG) neurons synthesize acetylcholine (ACh), in addition to their peptidergic nature. They also release ACh and are cholinoceptive, as they express cholinergic receptors. During gangliogenesis, ACh plays an important role in neuronal differentiation, modulating neuritic outgrowth and neurospecific gene expression. Starting from these data, we studied the expression of choline acetyltransferase (ChAT) and vesicular ACh transporter (VAChT) expression in rat DRG neurons. ChAT and VAChT genes are arranged in a "cholinergic locus", and several splice variants have been described. Using selective primers, we characterized splice variants of these cholinergic markers, demonstrating that rat DRGs express R1, R2, M, and N variants for ChAT and V1, V2, R1, and R2 splice variants for VAChT. Moreover, by RT-PCR analysis, we observed a progressive decrease in ChAT and VAChT transcripts from the late embryonic developmental stage (E18) to postnatal P2 and P15 and in the adult DRG. Interestingly, Western blot analyses and activity assays demonstrated that ChAT levels significantly increased during DRG ontogenesis. The modulated expression of different ChAT and VAChT splice variants during development suggests a possible differential regulation of cholinergic marker expression in sensory neurons and confirms multiple roles for ACh in DRG neurons, both in the embryo stage and postnatally.


Assuntos
Colina O-Acetiltransferase/biossíntese , Neurônios Colinérgicos/metabolismo , Gânglios Espinais/citologia , Proteínas do Tecido Nervoso/biossíntese , Células Receptoras Sensoriais/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/biossíntese , Acetilcolina/metabolismo , Processamento Alternativo , Animais , Colina O-Acetiltransferase/genética , Neurônios Colinérgicos/citologia , Gânglios Espinais/embriologia , Gânglios Espinais/crescimento & desenvolvimento , Proteínas do Tecido Nervoso/genética , Neurogênese , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Receptoras Sensoriais/citologia , Vesículas Sinápticas/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/genética
2.
J Neurosci Res ; 93(8): 1203-14, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25691247

RESUMO

Adult neural stem cell (aNSC) activity is tuned by external stimuli through the recruitment of transcription factors. This study examines the RE1 silencing transcription factor (REST) in neural stem/progenitor cells isolated from the subventricular zone of adult mouse brain and provides the first extensive characterization of REST-mediated control of the cellular and molecular properties. This study shows that REST knockdown affects the capacity of progenitor cells to generate neurospheres, reduces cell proliferation, and triggers cell differentiation despite the presence of growth factors. Genome- and transcriptome-wide analyses show that REST binding sites are significantly enriched in genes associated with synaptic transmission and nervous system development and function. Seeking candidate regulators of aNSC function, this study identifies a member of the bone morphogenetic protein (BMP) family, BMP6, the mRNA and protein of which increased after REST knockdown. The results of this study extend previous findings, demonstrating a reciprocal control of REST expression by BMPs. Administration of exogenous BMP6 inhibits aNSC proliferation and induces the expression of the astrocytic marker glial fibrillary acidic protein, highlighting its antimitogenic and prodifferentiative effects. This study suggests that BMP6 produced in a REST-regulated manner together with other signals can contribute to regulation of NSC maintenance and fate.


Assuntos
Células-Tronco Adultas/fisiologia , Inativação Gênica/fisiologia , Ventrículos Laterais/citologia , Ventrículos Laterais/fisiologia , Células-Tronco Neurais/fisiologia , Proteínas Repressoras/fisiologia , Animais , Proteína Morfogenética Óssea 6/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Humanos , Masculino , Camundongos , Fatores de Transcrição/fisiologia
3.
Cell Mol Life Sci ; 71(15): 2917-30, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24643740

RESUMO

Embryonic stem cells (ESCs) have been used extensively as in vitro models of neural development and disease, with special efforts towards their conversion into forebrain progenitors and neurons. The forebrain is the most complex brain region, giving rise to several fundamental structures, such as the cerebral cortex, the hypothalamus, and the retina. Due to the multiplicity of signaling pathways playing different roles at distinct times of embryonic development, the specification and patterning of forebrain has been difficult to study in vivo. Research performed on ESCs in vitro has provided a large body of evidence to complement work in model organisms, but these studies have often been focused more on cell type production than on cell fate regulation. In this review, we systematically reassess the current literature in the field of forebrain development in mouse and human ESCs with a focus on the molecular mechanisms of early cell fate decisions, taking into consideration the specific culture conditions, exogenous and endogenous molecular cues as described in the original studies. The resulting model of early forebrain induction and patterning provides a useful framework for further studies aimed at reconstructing forebrain development in vitro for basic research or therapy.


Assuntos
Células-Tronco Embrionárias/citologia , Prosencéfalo/embriologia , Animais , Células-Tronco Embrionárias/metabolismo , Humanos , Neurogênese , Prosencéfalo/citologia , Transdução de Sinais
4.
Cell Mol Neurobiol ; 34(2): 205-13, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24234043

RESUMO

Cystatin B (CSTB), an inhibitor of the cysteine proteases, belongs to the cathepsin family and it is known to interact with a number of proteins involved in cytoskeletal organization. CSTB has an intrinsic tendency to form aggregates depending on the redox environment. The gene encoding for CSTB is frequently mutated in association with the rare neurodegenerative condition progressive myoclonus epilepsy. Increased levels of CSTB have been observed in the spinal cord of transgenic mice modeling SOD1-linked familial amyotrophic lateral sclerosis, a fatal neurodegenerative disease affecting motoneurons. In the present study, we have investigated the relationship occurring between the expression of SOD1 and CSTB either wild-type or double-cysteine substitution mutant (Cys 3 and Cys 64). Whether or not there is a physical interaction between the two proteins was also investigated in overexpression experiments using a human neuroblastoma cell line and mouse-immortalized motoneurons. Here we report evidences for a reciprocal influence of CSTB and SOD1 at the gene expression level and for a direct interaction of the two proteins.


Assuntos
Cistatina B/metabolismo , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Superóxido Dismutase/metabolismo , Animais , Western Blotting , Linhagem Celular , Células Clonais , Cistatina B/genética , Regulação da Expressão Gênica , Humanos , Imunoprecipitação , Camundongos , Proteínas Mutantes/metabolismo , Ligação Proteica , Ratos , Solubilidade , Superóxido Dismutase/genética , Superóxido Dismutase-1
5.
Mol Neurobiol ; 54(5): 3729-3744, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27221609

RESUMO

The mouse neuroblastoma N18TG2 clone is unable to differentiate and is defective for the enzymes of the biosynthesis of neurotransmitters. The forced expression of choline acetyltransferase (ChAT) in these cells results in the synthesis and release of acetylcholine (Ach) and hence in the expression of neurospecific features and markers. To understand how the expression of ChAT triggered neuronal differentiation, we studied the differences in genome-wide transcription profiles between the N18TG2 parental cells and its ChAT-expressing 2/4 derived clone. The engagement of the 2/4 cells in the neuronal developmental program was confirmed by the increase of the expression level of several differentiation-related genes and by the reduction of the amount of transcripts of cell cycle genes. At the same time, we observed a massive reorganization of cytoskeletal proteins in terms of gene expression, with the accumulation of the nucleoskeletal lamina component Lamin A/C in differentiating cells. The increase of the Lmna transcripts induced by ChAT expression in 2/4 cells was mimicked treating the parental N18TG2 cells with the acetylcholine receptor agonist carbachol, thus demonstrating the direct role played by this receptor in neuron nuclei maturation. Conversely, a treatment of 2/4 cells with the muscarinic receptor antagonist atropine resulted in the reduction of the amount of Lmna RNA. Finally, the hypothesis that Lmna gene product might play a crucial role in the ChAT-dependent molecular differentiation cascade was strongly supported by Lmna knockdown in 2/4 cells leading to the downregulation of genes involved in differentiation and cytoskeleton formation and to the upregulation of genes known to regulate self-renewal and stemness.


Assuntos
Diferenciação Celular , Colina O-Acetiltransferase/metabolismo , Lamina Tipo A/metabolismo , Neuroblastoma/enzimologia , Neuroblastoma/patologia , Animais , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Ontologia Genética , Camundongos , Neuroblastoma/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Mapeamento de Interação de Proteínas , Receptores Colinérgicos/metabolismo , Receptores Muscarínicos/metabolismo , Transcrição Gênica/efeitos dos fármacos , Tretinoína/farmacologia , Regulação para Cima/efeitos dos fármacos
6.
J Mol Neurosci ; 30(1-2): 45-8, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17192622

RESUMO

One of the major questions related to nervous system development is the identification of signals directing neuronal populations to specific phenotypes (e.g., cholinergic, adrenergic, or peptidergic neurons) and involved in cell-to-cell interactions. Although neurotrophins have long been known for their function in development, the neurotransmitter role as modulator of gene expression and differentiation has been recognized only recently. Evidence for the ability of various neurotransmitter molecules to influence various cellular events during neuron differentiation has been reported in several systems (Lauder and Schambra, 1999). We have focused our interest on acetylcholine (ACh) and its possible role in the regulation of neuron-specific gene expression, using different experimental systems: (1) neuroblastoma cell lines, as a model of cholinergic neuron differentiation; (2) dorsal root ganglia (DRG) sensory neurons, which activate the expression of a cholinergic system early in development, in spite of their peptidergic or aminoacidergic neurotransmission; and (3) primary cultures of Schwann cells. Data obtained on each system will be described briefly.


Assuntos
Acetilcolina/fisiologia , Gânglios Espinais/embriologia , Animais , Linhagem Celular Tumoral , Colina O-Acetiltransferase/metabolismo , Desenvolvimento Embrionário , Gânglios Espinais/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Camundongos , Neuritos/fisiologia , Neuroblastoma , Neurônios/fisiologia , Ratos
7.
J Mol Neurosci ; 30(1-2): 75-6, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17192635

RESUMO

The gene of mammalian acetylcholinesterase (AChE) generates multiple molecular forms, by alternative splicing of its transcripts and association of the tailed variant (AChET) with structural proteins. In the mammalian brain, the major AChE species consists of AChET tetramers anchored to the cell membrane of neurons by the PRiMA protein (Perrier et al., 2002). Stress and anticholinesterase inhibitors have been reported to induce rapid and long-lasting expression of the readthrough variant (AChER) in the mouse brain (Kaufer et al., 1998). In the readthrough transcript, there is no splicing after the last exon encoding the catalytic domain, so that the entire alternatively spliced 3' region is maintained. It encodes a C-terminal peptide with no specific interaction properties: COS cells transfected with AChER produce a soluble, nonamphiphilic monomeric form. We quantified AChER and total AChE expression in the mouse brain after an immobilization stress and after heat shock in neuroblastoma cells, and compared the observed effects with those induced by irreversible AChE inhibition (Perrier et al., 2005).


Assuntos
Acetilcolinesterase/genética , Encéfalo/enzimologia , Inibidores da Colinesterase/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Estresse Psicológico/enzimologia , Animais , Linhagem Celular Tumoral , Masculino , Camundongos , Neuroblastoma , RNA Mensageiro/genética , Restrição Física , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
J Neurosci ; 24(13): 3355-69, 2004 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-15056715

RESUMO

Growing evidence indicates that cell cycle arrest and neurogenesis are highly coordinated and interactive processes, governed by cell cycle genes and neural transcription factors. The gene PC3 (Tis21/BTG2) is expressed in the neuroblast throughout the neural tube and inhibits cell cycle progression at the G1 checkpoint by repressing cyclin D1 transcription. We generated inducible mouse models in which the expression of PC3 was upregulated in neuronal precursors of the neural tube and of the cerebellum. These mice exhibited a marked increase in the production of postmitotic neurons and impairment of cerebellar development. Cerebellar granule precursors of PC3 transgenic mice displayed inhibition of cyclin D1 expression and a strong increase in the expression of Math1, a transcription factor required for their differentiation. Furthermore, PC3, encoded by a recombinant adenovirus, also induced Math1 in postmitotic granule cells in vitro and stimulated the Math1 promoter activity. In contrast, PC3 expression was unaffected in the cerebellar primordium of Math1 null mice, suggesting that PC3 acts upstream to Math1. As a whole, our data suggest that cell cycle exit of cerebellar granule cell precursors and the onset of cerebellar neurogenesis are coordinated by PC3 through transcriptional control of cyclin D1 and Math1, respectively.


Assuntos
Ciclo Celular/fisiologia , Proteínas Imediatamente Precoces/metabolismo , Neurônios/metabolismo , Fatores de Transcrição/biossíntese , Animais , Apoptose/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Divisão Celular/genética , Divisão Celular/fisiologia , Células Cultivadas , Cerebelo/citologia , Cerebelo/embriologia , Cerebelo/metabolismo , Nanismo/genética , Regulação da Expressão Gênica/fisiologia , Genes Letais , Genes Supressores de Tumor , Humanos , Proteínas Imediatamente Precoces/genética , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Fenótipo , Ratos , Ratos Wistar , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor , Regulação para Cima
9.
PLoS One ; 7(12): e51798, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23240065

RESUMO

During neural development, spatially regulated expression of specific transcription factors is crucial for central nervous system (CNS) regionalization, generation of neural precursors (NPs) and subsequent differentiation of specific cell types within defined regions. A critical role in dopaminergic differentiation in the midbrain (MB) has been assigned to the transcription factor Nurr1. Nurr1 controls the expression of key genes involved in dopamine (DA) neurotransmission, e.g. tyrosine hydroxylase (TH) and the DA transporter (DAT), and promotes the dopaminergic phenotype in embryonic stem cells. We investigated whether cells derived from different areas of the mouse CNS could be directed to differentiate into dopaminergic neurons in vitro by forced expression of the transcription factor Nurr1. We show that Nurr1 overexpression can promote dopaminergic cell fate specification only in NPs obtained from E13.5 ganglionic eminence (GE) and MB, but not in NPs isolated from E13.5 cortex (CTX) and spinal cord (SC) or from the adult subventricular zone (SVZ). Confirming previous studies, we also show that Nurr1 overexpression can increase the generation of TH-positive neurons in mouse embryonic stem cells. These data show that Nurr1 ability to induce a dopaminergic phenotype becomes restricted during CNS development and is critically dependent on the region of NPs derivation. Our results suggest that the plasticity of NPs and their ability to activate a dopaminergic differentiation program in response to Nurr1 is regulated during early stages of neurogenesis, possibly through mechanisms controlling CNS regionalization.


Assuntos
Sistema Nervoso Central , Mesencéfalo , Neurogênese , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Animais , Diferenciação Celular , Sistema Nervoso Central/crescimento & desenvolvimento , Sistema Nervoso Central/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Mesencéfalo/citologia , Mesencéfalo/crescimento & desenvolvimento , Mesencéfalo/metabolismo , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Transmissão Sináptica
10.
Acta Biochim Pol ; 58(4): 529-34, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22068108

RESUMO

In order to understand better the role of the human Tip60 complex component Gas41, we analysed its expression levels in brain tumours and searched for possible interactors. Two-hybrid screening of a human foetal brain library allowed identification of some molecular interactors of Gas41. Among them we found n-Myc transcription factor. The interaction between Gas41 and n-Myc was validated by pull-down experiments. We showed that Gas41 is able to bind both n-Myc and c-Myc proteins, and that the levels of expression of Gas41 and Myc proteins were similar to each other in such brain tumors as neuroblastomas and glioblastomas. Finally, in order to identify which region of Gas41 is involved in the interaction with Myc proteins, we analysed the ability of Gas41 to substitute for its orthologue Yaf9 in yeast; we showed that the N-terminal portions of the two proteins, containing the YEATS domains, are interchangeable, while the C-terminal portions are species-specific. In fact we found that Gas41 C-terminal portion is required for Myc protein interaction in human.


Assuntos
Neoplasias Encefálicas/metabolismo , Regulação Neoplásica da Expressão Gênica , Neuroblastoma/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Clonagem Molecular , Feto/citologia , Feto/metabolismo , Perfilação da Expressão Gênica , Biblioteca Gênica , Genes Neoplásicos , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Humanos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Coloração pela Prata , Especificidade da Espécie , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido
11.
Neuron Glia Biol ; 3(4): 269-79, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18634559

RESUMO

Cultures of Schwann cells from neonatal rat sciatic nerves were treated with acetylcholine agonists and the effects on cell proliferation evaluated. (3)[H]-thymidine incorporation shows that acetylcholine (ACh) receptor agonists inhibit cell proliferation, and FACS analysis demonstrates cell-cycle arrest and accumulation of cells in the G1 phase. The use of arecaidine, a selective agonist of muscarinic M2 receptors reveals that this effect depends mainly on M2 receptor activation. The arecaidine dependent-block in G1 is reversible because removal of arecaidine from the culture medium induces progression to the S phase. The block of the G1-S transition is also characterized by modulation of the expression of several cell-cycle markers. Moreover, treatment with ACh receptor agonist causes both a decrease in the PCNA protein levels in Schwann cell nuclei and an increase in p27 and p53 proteins. Finally, immuno-electron microscopy demonstrates that M2 receptors are expressed by Schwann cells in vivo. These results indicate that ACh, by modulating Schwann cell proliferation through M2 receptor activation, might contribute to their progression to a more differentiated phenotype.

12.
J Physiol ; 568(Pt 1): 171-80, 2005 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16037088

RESUMO

It is widely accepted that nicotinic acetylcholine receptor (nAChR) channel activity controls myoblast fusion into myotubes during myogenesis. In this study we explored the possible role of nAChR channels after cell fusion in a murine cell model. Using videoimaging techniques we showed that embryonic muscle nAChR channel openings contribute to the spontaneous transients of intracellular concentration of Ca2+ ([Ca2+]i) and to twitches characteristic of developing myotubes before innervation. Moreover, we observed a choline acetyltransferase immunoreactivity in the myotubes and we detected an acetylcholine-like compound in the extracellular solution. Therefore, we suggest that the autocrine activation of nAChR channels gives rise to [Ca2+]i spikes and contractions. Spontaneous openings of the nAChR channels may be an alternative, although less efficient, mechanism. We report also that blocking the nAChRs causes a significant reduction in cell survival, detectable as a decreased number of myotubes in culture. This led us to hypothesize a possible functional role for the autocrine activation of the nAChRs. By triggering mechanical activity, such activation could represent a strategy to ensure the trophism of myotubes in the absence of nerves.


Assuntos
Cálcio/metabolismo , Canais Iônicos/metabolismo , Músculo Esquelético/fisiologia , Mioblastos Esqueléticos/metabolismo , Receptores Nicotínicos/metabolismo , Acetilcolina/metabolismo , Acetilcolina/farmacologia , Animais , Animais Recém-Nascidos , Bungarotoxinas/farmacologia , Técnicas de Cultura de Células , Diferenciação Celular/fisiologia , Células Cultivadas , Colina O-Acetiltransferase/análise , Colina O-Acetiltransferase/metabolismo , Canais Iônicos/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Contração Muscular , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/efeitos dos fármacos , Mioblastos Esqueléticos/efeitos dos fármacos , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/efeitos dos fármacos
13.
J Neurochem ; 94(3): 629-38, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16001972

RESUMO

Acetylcholinesterase (AChE) exists in various molecular forms, depending on alternative splicing of its transcripts and association with structural proteins. Tetramers of the 'tailed' variant (AChE(T)), which are anchored in the cell membrane of neurons by the PRiMA (Proline Rich Membrane Anchor) protein, constitute the main form of AChE in the mammalian brain. In the mouse brain, stress and anticholinesterase inhibitors have been reported to induce expression of the unspliced 'readthrough' variant (AChE(R)) mRNA which produces a monomeric form. To generalize this observation, we attempted to quantify AChE(R) and AChE(T) after organophosphate intoxication in the mouse brain and compared the observed effects with those of stress induced by swimming or immobilization; we also analyzed the effects of heat shock and AChE inhibition on neuroblastoma cells. Active AChE molecular forms were characterized by sedimentation and non-denaturing electrophoresis, and AChE transcripts were quantified by real-time PCR. We observed a moderate increase of the AChE(R) transcript in some cases, both in the mouse brain and in neuroblastoma cultures, but we did not detect any increase of the corresponding active enzyme.


Assuntos
Acetilcolinesterase/metabolismo , Processamento Alternativo/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Temperatura Alta , Soman/farmacologia , Estresse Fisiológico/enzimologia , Acetilcolinesterase/química , Acetilcolinesterase/genética , Acetilcolinesterase/farmacologia , Processamento Alternativo/fisiologia , Animais , Western Blotting , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular Tumoral , Ácido Desoxicólico/farmacologia , Detergentes/farmacologia , Interações Medicamentosas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neuroblastoma , Octoxinol/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/biossíntese , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Fatores de Tempo
14.
J Neurosci Res ; 78(6): 815-23, 2004 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-15505792

RESUMO

Cyclic GMP (cGMP)-binding cGMP-specific phosphodiesterase (PDE5) activity was found in chick dorsal root ganglia (DRG). PDE5 expression was studied at different stages of development: in embryonic day 10 (E10) and E18 embryos and in 5-day post-hatching chick (P5). The presence of PDE5 was suggested by the ion exchange chromatography elution profile in E18 DRG extracts, where cGMP-specific hydrolytic calmodulin-independent activity was found; in other stages, this activity coeluted with the PDE1 calmodulin-stimulated isoform characterized previously. Inhibition studies supported the hypothesis that the newly identified PDE activity belongs to the PDE5 isoform. Western blot analysis using a PDE5-specific antibody was also carried out and revealed the presence of three specific immunoreactive bands with apparent molecular weights of 98, 93, and 86 kDa, corresponding to the three described splice variants (PDE5A1, PDE5A2, and PDE5A3). The expression in DRG of the three PDE5 isoforms was also confirmed by RT-PCR. Developmental regulation of PDE5 was revealed by the immunoblot analysis at different stages; expression was very low at E10 but an overall substantial increase occurred between E10-18 (about 12-fold, considering the three PDE5 isoforms together). Differences were revealed, however, when a single PDE5 isoform was considered. PDE5A1 and PDE5A3 showed an increase at all stages although more pronounced between E10-18, whereas PDE5A2 underwent a marked increase (about 38-fold) in the first period and remained nearly constant between E18 and P5. This is the first evidence of PDE5 in sensory neurons, and the distinct temporal expression patterns of enzyme isoforms may indicate different physiologic roles in developing and mature chick DRG.


Assuntos
3',5'-GMP Cíclico Fosfodiesterases/genética , Processamento Alternativo/genética , Galinhas/crescimento & desenvolvimento , Gânglios Espinais/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Animais , Embrião de Galinha , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5 , Gânglios Espinais/crescimento & desenvolvimento , Variação Genética
15.
J Neurochem ; 88(6): 1533-9, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15009654

RESUMO

Spontaneous and potassium-induced acetylcholine release from embryonic (E12 and E18) chick dorsal root ganglia explants at 3 and 7 days in culture was investigated using a chemiluminescent procedure. A basal release ranging from 2.4 to 13.8 pm/ganglion/5 min was detected. Potassium application always induced a significant increase over the basal release. The acetylcholine levels measured in E12 explants were 6.3 and 38.4 pm/ganglion/5 min at 3 and 7 days in culture, respectively, while in E18 explant cultures they were 10.7 and 15.5 pm/ganglion/5 min. In experiments performed in the absence of extracellular Ca2+ ions, acetylcholine release, both basal and potassium-induced, was abolished and it was reduced by cholinergic antagonists. A morphometric analysis of explant fibre length suggested that acetylcholine release was directly correlated to neurite extension. Moreover, treatment of E12 dorsal root ganglion-dissociated cell cultures with carbachol as cholinergic receptor agonist was shown to induce a higher neurite outgrowth compared with untreated cultures. The concomitant treatment with carbachol and the antagonists at muscarinic receptors atropine and at nicotinic receptors mecamylamine counteracted the increase in fibre outgrowth. Although the present data have not established whether acetylcholine is released by neurones or glial cells, these observations provide the first evidence of a regulated release of acetylcholine in dorsal root ganglia.


Assuntos
Acetilcolina/metabolismo , Gânglios Espinais/metabolismo , Potássio/farmacologia , Animais , Cálcio/metabolismo , Embrião de Galinha , Técnicas de Cultura , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/embriologia , Medições Luminescentes , Neuritos/efeitos dos fármacos , Neuritos/fisiologia , Fatores de Tempo
16.
J Neurosci Res ; 73(2): 227-34, 2003 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-12836165

RESUMO

The morphogenetic role of the neurotransmitter acetylcholine was studied in cultures of dorsal root ganglia (DRG) neurons obtained from E12 and E18 chick embryos. With this model we have evaluated neurofilament expression and neurite outgrowth following cholinergic agonist and antagonist treatment. Morphometric analysis undertaken to evaluate fiber outgrowth has indicated that E12 DRG cultures treated with cholinergic agonists, such as muscarine and carbachol, when compared with untreated cultures, have longer fibers and a higher number of fibers per neuron. Concomitant treatment with agonists and the antagonists atropine or mecamylamine counteracts the increase in fiber outgrowth, suggesting that the cholinergic agonist effects were mediated by both muscarinic and nicotinic receptors. The expression of the three neurofilament proteins was also evaluated. Western blot analysis showed that, in E12 DRG cultures, both muscarine and carbachol induce a significant increase in neurofilament protein expression and that this effect is inhibited by cholinergic antagonist treatment. Moreover, Northern blot analysis has demonstrated that the increased expression of 68- and 145-kDa neurofilament proteins is dependent on cholinergic modulation of the neurofilament transcripts. Modulated expression of neurofilament proteins by cholinergic agonists was not evident in E18 DRG cultures, suggesting that, when sensory neurons have completed their differentiation, the cholinergic system might be involved in other functions. In conclusion, our data demonstrate that, during sensory neuron development, acetylcholine modulates neurite outgrowth controlling neurospecific marker expression.


Assuntos
Colinérgicos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Neuritos/efeitos dos fármacos , Proteínas de Neurofilamentos/biossíntese , Neurônios Aferentes/efeitos dos fármacos , Animais , Células Cultivadas , Embrião de Galinha , Regulação da Expressão Gênica/fisiologia , Neuritos/metabolismo , Neurônios Aferentes/metabolismo
17.
J Neurochem ; 80(6): 970-9, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11953447

RESUMO

The level and characteristics of 3'-5'-cyclic nucleotide phosphodiesterase (PDE) activity in chick dorsal root ganglion (DRG) extracts of 5-day posthatching chicken (P5) and E10 and E18 embryos were studied. At all stages, PDE activity is stimulated by calcium and calmodulin. A 5-fold increase in basal cAMP and cGMP PDE activity is evident from E10 to E18, while from E18 to P5 basal PDE activity remains constant. Ion exchange chromatography elution profile indicates that PDE1 isoforms represent the bulk of the PDE activity present. Inhibition studies were performed in order to distinguish the activity due to PDE1A, B and C. Western blot analysis using anti-mammalian PDE1A, B and C specific antibodies was also performed. Densitometric analysis of the stained bands reveals that PDE1B and PDE1C display a prominent increase between day 10 and day 18 of development (eight- and 3.6 fold, respectively) while a more limited increase (1.6- and 1.5-fold) is observed between E18 and P5; on the other hand PDE1A shows continuously increasing levels throughout development. Immunohistochemical analysis was performed with isoform specific antibodies used for western blot analysis. PDE1A immunoreactivity is found in the cytoplasm and fibers of several neurons differing in size and distributed throughout the ganglion. PDE1B staining is evident on all neurons, however, fibers appear very faintly labelled. All neurons appear stained by PDE1C antibody, although the intensity of immunostaining is always heterogeneous in different neuronal populations: no staining was evident on fibers or in non-neural cells. The distinct spatial and temporal expression patterns of PDE1 isoforms may indicate their different physiological roles in developing and mature chick DRG.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Gânglios Espinais/embriologia , Gânglios Espinais/enzimologia , Animais , Especificidade de Anticorpos , Cálcio/farmacologia , Calmodulina/farmacologia , Embrião de Galinha , Galinhas , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1 , Densitometria , Ativação Enzimática/efeitos dos fármacos , Gânglios Espinais/citologia , Immunoblotting , Imuno-Histoquímica , Isoenzimas/metabolismo , Especificidade de Órgãos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Extratos de Tecidos/química
18.
Biochem Biophys Res Commun ; 298(4): 559-65, 2002 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-12408988

RESUMO

The mouse acetylcholinesterase AChE(H) was expressed in the yeast Kluyveromyces lactis. The AChE(H) activity was detectable in intact cells whereas it was absent in the culture media. Glucanase treatment and immunoelectron microscopy data indicated that AChE(H) is anchored to plasma membrane and that the mouse GPI-signaling is compatible with the K. lactis targeting machinery. The AChE(H) was also expressed in a K. lactis strain carrying an inactivated allele of KlPMR1, the gene coding for a P-type Ca(2+)-ATPase of the Golgi apparatus. This mutant displays changes in protein glycosylation and cell wall structure. The AChE(H) activity detected in Klpmr1Delta cells was more than twofold higher than that observed in wild-type cells. The combination of AChE expression and anchoring with the characteristics of Klpmr1Delta strain of K. lactis resulted in yeast cells displaying high AChE activity. This could be regarded as a novel sensing unit to be employed for detecting AChE inhibitors as pesticides.


Assuntos
Acetilcolinesterase/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Kluyveromyces/genética , Acetilcolinesterase/genética , Animais , Camundongos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa