Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Gut ; 67(6): 1064-1070, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-28381523

RESUMO

OBJECTIVE: Necrotising enterocolitis (NEC) is one of the most common and often fatal intestinal disorders in preterm infants. Markers to identify at-risk infants as well as therapies to prevent and treat NEC are limited and urgently needed. NEC incidence is significantly lower in breast-fed compared with formula-fed infants. Infant formula lacks human milk oligosaccharides (HMO), such as disialyllacto-N-tetraose (DSLNT), which prevents NEC in neonatal rats. However, it is unknown if DSLNT also protects human preterm infants. DESIGN: We conducted a multicentre clinical cohort study and recruited 200 mothers and their very low birthweight infants that were predominantly human milk-fed. We analysed HMO composition in breast milk fed to infants over the first 28 days post partum, matched each NEC case with five controls and used logistic regression and generalised estimating equation to test the hypothesis that infants who develop NEC receive milk with less DSLNT than infants who do not develop NEC. RESULTS: Eight infants in the cohort developed NEC (Bell stage 2 or 3). DSLNT concentrations were significantly lower in almost all milk samples in NEC cases compared with controls, and its abundance could identify NEC cases prior to onset. Aggregate assessment of DSLNT over multiple days enhanced the separation of NEC cases and control subjects. CONCLUSIONS: DSLNT content in breast milk is a potential non-invasive marker to identify infants at risk of developing NEC, and screen high-risk donor milk. In addition, DSLNT could serve as a natural template to develop novel therapeutics against this devastating disorder.


Assuntos
Enterocolite Necrosante/etiologia , Leite Humano/química , Oligossacarídeos/análise , Aleitamento Materno , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Recém-Nascido de muito Baixo Peso , Masculino , Estudos Prospectivos , Risco , Medição de Risco
2.
J Biol Chem ; 292(27): 11243-11249, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28416607

RESUMO

Streptococcus agalactiae (group B Streptococcus, GBS) is a leading cause of invasive bacterial infections in newborns, typically acquired vertically during childbirth secondary to maternal vaginal colonization. Human milk oligosaccharides (HMOs) have important nutritional and biological activities that guide the development of the immune system of the infant and shape the composition of normal gut microbiota. In this manner, HMOs help protect against pathogen colonization and reduce the risk of infection. In the course of our studies of HMO-microbial interactions, we unexpectedly uncovered a novel HMO property to directly inhibit the growth of GBS independent of host immunity. By separating different HMO fractions through multidimensional chromatography, we found the bacteriostatic activity to be confined to specific non-sialylated HMOs and synergistic with a number of conventional antibiotic agents. Phenotypic screening of a GBS transposon insertion library identified a mutation within a GBS-specific gene encoding a putative glycosyltransferase that confers resistance to HMOs, suggesting that HMOs may function as an alternative substrate to modify a GBS component in a manner that impairs growth kinetics. Our study uncovers a unique antibacterial role for HMOs against a leading neonatal pathogen and expands the potential therapeutic utility of these versatile molecules.


Assuntos
Antibacterianos/farmacologia , Leite Humano/química , Oligossacarídeos/farmacologia , Streptococcus agalactiae/crescimento & desenvolvimento , Antibacterianos/química , Antibacterianos/isolamento & purificação , Feminino , Humanos , Oligossacarídeos/química , Oligossacarídeos/isolamento & purificação , Streptococcus agalactiae/genética
3.
J Org Chem ; 82(24): 13152-13160, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29124935

RESUMO

Necrotizing enterocolitis (NEC) is one of the most common and devastating intestinal disorders in preterm infants. Therapies to meet the clinical needs for this special and highly vulnerable population are extremely limited. A specific human milk oligosaccharide (HMO), disialyllacto-N-tetraose (DSLNT), was shown to contribute to the beneficial effects of breastfeeding as it prevented NEC in a neonatal rat model and was associated with lower NEC risk in a human clinical cohort study. Herein, gram-scale synthesis of two DSLNT analogs previously shown to have NEC preventing effect is described. In addition, four novel disialyl glycans have been designed and synthesized by enzymatic or chemoenzymatic methods. Noticeably, two disialyl tetraoses have been produced by enzymatic sialylation of chemically synthesized thioethyl ß-disaccharides followed by removal of the thioethyl aglycon. Dose-dependent and single-dose comparison studies showed varying NEC-preventing effects of the disialyl glycans in neonatal rats. This study helps to refine the structure requirement of the NEC-preventing effect of disialyl glycans and provides important dose-dependent information for using DSLNT analogs as potential therapeutics for NEC prevention in preterm infants.


Assuntos
Enterocolite Necrosante/prevenção & controle , Oligossacarídeos/química , Polissacarídeos/química , Animais , Humanos , Recém-Nascido , Modelos Animais , Oligossacarídeos/farmacologia , Polissacarídeos/farmacologia , Ratos
4.
Br J Nutr ; 116(2): 294-9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27212112

RESUMO

Necrotising enterocolitis (NEC) is one of the most frequent and fatal intestinal disorders in preterm infants and has very limited treatment options. Breast-fed infants are at a 6-10-fold lower NEC risk than formula-fed infants, and we have previously shown that human milk oligosaccharides (HMO) improved survival and reduced pathology in a rat NEC model. The HMO disialyllacto-N-tetraose (DSLNT) was most effective, and sialylation was shown to be essential for its protective effect. Galacto-oligosaccharides (GOS), currently added to some infant formula, but not containing sialic acid, had no effect. In addition to DSLNT, our previous work also showed that the neutral HMO fraction, which contains high concentrations of 2'-fucosyllactose (2'FL), slightly improved pathology scores. Here, we assessed the in vivo efficacy of 2'FL, as well as of GOS that we enzymatically sialylated (Sia-GOS). Neonatal rats were randomised into the following study groups - dam-fed (DF), formula-fed (FF), FF containing pooled HMO (10 mg/ml), GOS (8 mg/ml), Sia-GOS (500 µm) or 2'FL (2 mg/ml) - and subjected to the established NEC protocol. The DF and HMO groups had the lowest pathology scores with mean values of 0·67 (sd 0·34) and 0·90 (sd 0·47), respectively. The FF group had significantly elevated pathology scores of 2·02 (sd 0·63). Although the addition of GOS to the formula had no protective effect and generated scores of 2·00 (sd 0·63), the addition of Sia-GOS or 2'FL significantly lowered pathology scores to 1·32 (sd 0·56) (P<0·0034) and 1·43 (sd 0·51) (P<0·0040), respectively. The results warrant further studies to investigate the underlying mechanisms and to assess safety and efficacy in human neonates.


Assuntos
Enterocolite Necrosante/tratamento farmacológico , Galactose/uso terapêutico , Fórmulas Infantis/química , Leite Humano/química , Oligossacarídeos/uso terapêutico , Ácidos Siálicos/uso terapêutico , Trissacarídeos/uso terapêutico , Animais , Animais Recém-Nascidos , Aleitamento Materno , Feminino , Galactose/metabolismo , Galactose/farmacologia , Humanos , Fenômenos Fisiológicos da Nutrição do Lactente , Recém-Nascido , Intestinos/efeitos dos fármacos , Intestinos/patologia , Oligossacarídeos/metabolismo , Oligossacarídeos/farmacologia , Distribuição Aleatória , Ratos Sprague-Dawley , Ácidos Siálicos/metabolismo , Ácidos Siálicos/farmacologia , Trissacarídeos/farmacologia
5.
J Nutr ; 145(9): 1992-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26180242

RESUMO

BACKGROUND: Human milk oligosaccharides (HMOs) are a highly abundant, diverse group of unique glycans that are postulated to promote the development of a protective bacterial microbiota in the intestine and prevent adhesive and invasive interactions of pathogenic bacteria with mucosal epithelia. Candida albicans, a prevalent fungal colonizer of the neonatal gut, causes the majority of fungal disease in premature infants and is highly associated with life-threatening intestinal disorders. OBJECTIVE: The objective of the current study was to test the hypothesis that HMOs protect human premature intestinal epithelial cells (pIECs) from invasion by C. albicans. METHODS: To study fungal invasion, a quantitative immunocytochemical assay was used to distinguish invading from noninvading C. albicans cells in the presence and absence of HMOs. To understand how HMOs affect C. albicans invasion of pIECs, the expression of C. albicans virulence traits that are important for invasiveness (hyphal morphogenesis and ability to associate with host cells) were quantified. RESULTS: Treatment with HMOs reduced invasion of pIECs by C. albicans in a dose-dependent manner by 14-67%, with a physiologic concentration (15mg/mL) of HMOs causing a 52% reduction in invasion (P < 0.05). The decreased invasive ability of C. albicans was associated with hyphal lengths that were ∼30% shorter (P < 0.05), likely because of a delay in the induction of hyphal morphogenesis after inoculation of yeast onto pIECs, which correlated with a 23% reduction in the combined expression level of hyphal-specific genes (P < 0.05). In addition, HMOs caused a 40% decrease in the number of C. albicans cells able to associate with pIECs at the time of hyphal induction (P < 0.05). CONCLUSIONS: These results, obtained with the use of a primary pIEC model, indicate that HMOs reduce virulence characteristics of C. albicans and suggest a role for HMOs in protecting the premature infant intestine from invasion and damage by C. albicans hyphae.


Assuntos
Candida albicans/efeitos dos fármacos , Células Epiteliais/microbiologia , Intestinos/citologia , Leite Humano/química , Oligossacarídeos/farmacologia , Candida albicans/crescimento & desenvolvimento , Linhagem Celular Tumoral , Interações Hospedeiro-Patógeno , Humanos , Hifas/efeitos dos fármacos , Intestinos/microbiologia , Fatores de Virulência
6.
J Infect Dis ; 209(3): 389-98, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23990566

RESUMO

The invasive pathogen uropathogenic Escherichia coli (UPEC) is the primary cause of urinary tract infections (UTIs). Recurrent infection that can progress to life-threatening renal failure has remained as a serious global health concern in infants. UPEC adheres to and invades bladder epithelial cells to establish infection. Studies have detected the presence of human milk oligosaccharides (HMOs) in urine of breast-fed, but not formula-fed, neonates. We investigated the mechanisms HMOs deploy to elicit protection in human bladder epithelial cells infected with UPEC CFT073, a prototypic urosepsis-associated strain. We found a significant reduction in UPEC internalization into HMO-pretreated epithelial cells without observing any significant effect in UPEC binding to these cells. This event coincides with a rapid decrease in host cell cytotoxicity, recognized by LIVE/DEAD staining and cell detachment, but independent of caspase-mediated or mitochondrial-mediated programmed cell death pathways. Further investigation revealed HMOs, and particularly the sialic acid-containing fraction, reduced UPEC-mediated MAPK and NF-κB activation. Collectively, our results indicate that HMOs can protect bladder epithelial cells from deleterious cytotoxic and proinflammatory effects of UPEC infection, and may be one contributing mechanism underlying the epidemiological evidence of reduced UTI incidence in breast-fed infants.


Assuntos
Endocitose/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Fatores Imunológicos/metabolismo , Leite Humano/química , Oligossacarídeos/metabolismo , Escherichia coli Uropatogênica/fisiologia , Aderência Bacteriana/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Lactente , Escherichia coli Uropatogênica/efeitos dos fármacos
7.
J Nutr ; 144(8): 1227-33, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24919691

RESUMO

The heavy burden of maternal HIV infection has resulted in a high prevalence of premature birth and associated necrotizing enterocolitis (NEC). Human milk oligosaccharides (HMOs) were recently associated with HIV infection and transmission through breastfeeding and were also shown to reduce NEC in an animal model, particularly the HMO disialyllacto-N-tetraose (DSLNT). The primary aim of this study was to verify differences in HMO composition between HIV-infected and HIV-uninfected women. The secondary aim was to assess whether the HMO composition in the milk of mothers whose infants were diagnosed with NEC differs from that of mothers whose infants did not develop NEC. This study forms part of a larger clinical trial conducted at the Tygerberg Children's Hospital, Cape Town, South Africa, which recruited HIV-infected and HIV-uninfected mothers and their preterm infants (<34 wk gestation; ≥500 and ≤1250 g). Eighty-two mother-infant pairs were selected for the substudy. Mother-infant pairs were stratified according to the mother's HIV (infected/uninfected) and secretor status (secretor/nonsecretor). HMOs in 4- and 28-d postpartum milk samples were analyzed by HPLC and compared between groups. Our results confirm previous reports that HIV-infected mothers have higher relative abundances of 3'-sialyllactose in their milk compared with HIV-uninfected mothers (10.7% vs. 6.8%; P < 0.01). Most intriguingly, the data also indicated that low concentrations of DSLNT in the 4-d milk samples in the mother's milk increased the infant's risk of NEC (200 ± 126 vs. 345 ± 186 µg/mL; P < 0.05), which is in accordance with results from previously published animal studies and warrants further investigation. This trial was registered at clinicaltrials.gov as NCT01868737.


Assuntos
Enterocolite Necrosante/epidemiologia , Infecções por HIV/metabolismo , Leite Humano/química , Oligossacarídeos/análise , Nascimento Prematuro/epidemiologia , Adulto , Aleitamento Materno , Enterocolite Necrosante/etiologia , Feminino , Infecções por HIV/complicações , Humanos , Incidência , Recém-Nascido Prematuro/metabolismo , Recém-Nascido de muito Baixo Peso/metabolismo , Masculino , Mães , Gravidez , Nascimento Prematuro/etiologia , Ensaios Clínicos Controlados Aleatórios como Assunto , África do Sul , Adulto Jovem
8.
J Pediatr Gastroenterol Nutr ; 58(2): 165-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24048169

RESUMO

Breast-feeding reduces the risk of enteric bacterial infections in newborns in part because of human milk oligosaccharides (HMOs), complex glycans that are present in human milk, but not in infant formula. Enteropathogenic Escherichia coli (EPEC) are attaching/effacing pathogens that cause serious diarrheal illness with potentially high mortality in infants. We isolated HMOs from pooled human milk and found that they significantly reduce EPEC attachment to cultured epithelial cells. In suckling mice, administration of HMOs significantly reduced colonization with EPEC compared with untreated controls. These data suggest an essential role for HMOs in the prevention of EPEC infections in human infants.


Assuntos
Anti-Infecciosos/uso terapêutico , Aderência Bacteriana/efeitos dos fármacos , Diarreia/prevenção & controle , Escherichia coli Enteropatogênica/efeitos dos fármacos , Infecções por Escherichia coli/prevenção & controle , Leite Humano/química , Oligossacarídeos/uso terapêutico , Animais , Anti-Infecciosos/farmacologia , Aleitamento Materno , Diarreia/etiologia , Diarreia/microbiologia , Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Humanos , Camundongos Endogâmicos C57BL , Oligossacarídeos/isolamento & purificação , Oligossacarídeos/farmacologia
9.
Angew Chem Int Ed Engl ; 53(26): 6687-91, 2014 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-24848971

RESUMO

Two novel synthetic α2-6-linked disialyl hexasaccharides, disialyllacto-N-neotetraose (DSLNnT) and α2-6-linked disialyllacto-N-tetraose (DS'LNT), were readily obtained by highly efficient one-pot multienzyme (OPME) reactions. The sequential OPME systems described herein allowed the use of an inexpensive disaccharide and simple monosaccharides to synthesize the desired complex oligosaccharides with high efficiency and selectivity. DSLNnT and DS'LNT were shown to protect neonatal rats from necrotizing enterocolitis (NEC) and are good therapeutic candidates for preclinical experiments and clinical application in treating NEC in preterm infants.


Assuntos
Enterocolite Necrosante/tratamento farmacológico , Oligossacarídeos/síntese química , Substâncias Protetoras/uso terapêutico , Animais , Bifidobacterium/enzimologia , Avaliação Pré-Clínica de Medicamentos , Complexos Multienzimáticos/metabolismo , Oligossacarídeos/química , Oligossacarídeos/uso terapêutico , Substâncias Protetoras/síntese química , Substâncias Protetoras/química , Ratos
11.
Sci Rep ; 13(1): 14308, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37652940

RESUMO

Human milk contains over 200 distinct oligosaccharides, which are critical to shaping the developing neonatal gut microbiome. To investigate whether a complex mixture of human milk oligosaccharides (HMOs) would similarly modulate the adult gut microbiome, HMO-Concentrate derived from pooled donor breast milk was administered orally to 32 healthy adults for 7 days followed by 21 days of monitoring. Fecal samples were collected for 16S rRNA gene sequencing, shotgun metagenomics, and metabolomics analyses. HMO-Concentrate induced dose-dependent Bifidobacterium expansion, reduced microbial diversity, and altered microbial gene content. Following HMO cessation, a microbial succession occurred with diverse taxonomic changes-including Bacteroides expansion-that persisted through day 28. This was associated with altered microbial gene content, shifts in serum metabolite levels, and increased circulating TGFß and IL-10. Incubation of cultured adult microbiota with HMO-Concentrate induced dose-dependent compositional shifts that were not recapitulated by individual HMOs or defined mixtures of the 10 most abundant HMOs in HMO-Concentrate at their measured concentrations. These findings support that pooled donor HMOs can exert direct effects on adult gut microbiota and that complex mixtures including low abundance HMOs present in donor milk may be required for maximum effect.Registration: ClinicalTrials.gov NCT05516225.


Assuntos
Microbioma Gastrointestinal , Leite Humano , Oligossacarídeos , Adulto , Feminino , Humanos , Recém-Nascido , Leite Humano/química , Oligossacarídeos/farmacologia , RNA Ribossômico 16S/genética
12.
Cell Host Microbe ; 31(9): 1523-1538.e10, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37657443

RESUMO

Manipulation of the gut microbiome using live biotherapeutic products shows promise for clinical applications but remains challenging to achieve. Here, we induced dysbiosis in 56 healthy volunteers using antibiotics to test a synbiotic comprising the infant gut microbe, Bifidobacterium longum subspecies infantis (B. infantis), and human milk oligosaccharides (HMOs). B. infantis engrafted in 76% of subjects in an HMO-dependent manner, reaching a relative abundance of up to 81%. Changes in microbiome composition and gut metabolites reflect altered recovery of engrafted subjects compared with controls. Engraftment associates with increases in lactate-consuming Veillonella, faster acetate recovery, and changes in indolelactate and p-cresol sulfate, metabolites that impact host inflammatory status. Furthermore, Veillonella co-cultured in vitro and in vivo with B. infantis and HMO converts lactate produced by B. infantis to propionate, an important mediator of host physiology. These results suggest that the synbiotic reproducibly and predictably modulates recovery of a dysbiotic microbiome.


Assuntos
Microbioma Gastrointestinal , Microbiota , Simbióticos , Lactente , Humanos , Adulto , Disbiose , Leite Humano , Ácido Láctico , Veillonella
13.
Cell Host Microbe ; 30(5): 712-725.e7, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35504279

RESUMO

Predictable and sustainable engraftment of live biotherapeutic products into the human gut microbiome is being explored as a promising way to modulate the human gut microbiome. We utilize a synbiotic approach pairing the infant gut microbe Bifidobacterium longum subspecies infantis (B. infantis) and human milk oligosaccharides (HMO). B. infantis, which is typically absent in adults, engrafts into healthy adult microbiomes in an HMO-dependent manner at a relative abundance of up to 25% of the bacterial population without antibiotic pretreatment or adverse effects. Corresponding changes in metabolites are detected. Germ-free mice transplanted with dysbiotic human microbiomes also successfully engraft with B. infantis in an HMO-dependent manner, and the synbiotic augments butyrate levels both in this in vivo model and in in vitro cocultures of the synbiotic with specific Firmicutes species. Finally, the synbiotic inhibits the growth of enteropathogens in vitro. Our findings point to a potential safe mechanism for ameliorating dysbioses characteristic of numerous human diseases.


Assuntos
Microbiota , Simbióticos , Animais , Antibacterianos/metabolismo , Disbiose/metabolismo , Disbiose/terapia , Humanos , Lactente , Camundongos , Leite Humano/microbiologia , Oligossacarídeos/metabolismo
14.
Nat Commun ; 9(1): 5010, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30479342

RESUMO

Neonatal rotavirus infections are predominantly asymptomatic. While an association with gastrointestinal symptoms has been described in some settings, factors influencing differences in clinical presentation are not well understood. Using multidisciplinary approaches, we show that a complex interplay between human milk oligosaccharides (HMOs), milk microbiome, and infant gut microbiome impacts neonatal rotavirus infections. Validating in vitro studies where HMOs are not decoy receptors for neonatal strain G10P[11], population studies show significantly higher levels of Lacto-N-tetraose (LNT), 2'-fucosyllactose (2'FL), and 6'-siallylactose (6'SL) in milk from mothers of rotavirus-positive neonates with gastrointestinal symptoms. Further, these HMOs correlate with abundance of Enterobacter/Klebsiella in maternal milk and infant stool. Specific HMOs also improve the infectivity of a neonatal strain-derived rotavirus vaccine. This study provides molecular and translational insight into host factors influencing neonatal rotavirus infections and identifies maternal components that could promote the performance of live, attenuated rotavirus vaccines.


Assuntos
Microbioma Gastrointestinal , Leite Humano/química , Leite Humano/microbiologia , Oligossacarídeos/metabolismo , Infecções por Rotavirus/microbiologia , Fezes/microbiologia , Humanos , Recém-Nascido , Rotavirus/patogenicidade , Infecções por Rotavirus/imunologia , Vacinas contra Rotavirus/imunologia
15.
Paediatr Int Child Health ; 37(3): 204-209, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28262036

RESUMO

BACKGROUND: Human milk oligosaccharides (HMOs) have important protective functions in human milk. A low-cost remote pasteurisation temperature-monitoring system has been designed using FoneAstra, a cell phone-based networked sensing system to monitor simulated flash heat pasteurisation. AIM: To compare the pasteurisation effect on HMOs of the FoneAstra FH method with the current Sterifeed Holder method used by human milk banks. METHODS: Donor human milk samples (n = 48) were obtained from a human milk bank and pasteurised using the two pasteurisation methods. HMOs were purified from samples and labelled before separation using high-performance liquid chromatography. Concentrations of total HMOs, sialylated and fucosylated HMOs and individual HMOs using the two pasteurisation methods were compared using repeated-measures ANOVA. RESULTS: The study demonstrated no difference in total concentration of HMOs between the two pasteurisation methods and a small but significant increase in the total concentration of HMOs regardless of pasteurisation methods compared with controls (unpasteurised samples) (p<0.0001). CONCLUSION: The FoneAstra FH pasteurisation system does not negatively affect oligosaccharides in human milk and therefore is a possible alternative for providing safely sterilised human milk for low- and middle-income countries.


Assuntos
Leite Humano/química , Leite Humano/efeitos da radiação , Oligossacarídeos/análise , Pasteurização/métodos , Cromatografia Líquida de Alta Pressão , Humanos
16.
Am J Clin Nutr ; 106(5): 1274-1286, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28877893

RESUMO

Background: Early-life colonization of the intestinal tract is a dynamic process influenced by numerous factors. The impact of probiotic-supplemented infant formula on the composition and function of the infant gut microbiota is not well defined.Objective: We sought to determine the effects of a bifidobacteria-containing formula on the healthy human intestinal microbiome during the first year of life.Design: A double-blind, randomized, placebo-controlled study of newborn infants assigned to a standard whey-based formula containing a total of 107 colony-forming units (CFU)/g of Bifidobacterium bifidum, Bifidobacterium breve, Bifidobacterium longum, B. longum subspecies infantis (intervention), or to a control formula without bifidobacteria (placebo). Breastfed controls were included. Diversity and composition of fecal microbiota were determined by 16S ribosomal RNA gene amplicon sequencing, and metabolite profiles were analyzed by ultrahigh-performance liquid chromatography-mass spectrometry over a period of 2 y.Results: Infants (n = 106) were randomly assigned to either the interventional (n = 48) or placebo (n = 49) group; 9 infants were exclusively breastfed throughout the entire intervention period of 12 mo. Infants exposed to bifidobacteria-supplemented formula showed decreased occurrence of Bacteroides and Blautia spp. associated with changes in lipids and unknown metabolites at month 1. Microbiota and metabolite profiles of intervention and placebo groups converged during the study period, and long-term colonization (24 mo) of the supplemented Bifidobacterium strains was not detected. Significant differences in microbiota and metabolites were detected between infants fed breast milk and those fed formula (P < 0.005) and between infants birthed vaginally and those birthed by cesarean delivery (P < 0.005). No significant differences were observed between infant feeding groups regarding growth, antibiotic uptake, or other health variables (P > 0.05).Conclusion: The supplementation of bifidobacteria to infant diet can modulate the occurrence of specific bacteria and metabolites during early life with no detectable long-term effects. This trial was registered at germanctr.de as DRKS00003660.


Assuntos
Bifidobacterium , Fezes/microbiologia , Microbioma Gastrointestinal , Metaboloma , Probióticos/administração & dosagem , Aleitamento Materno , Método Duplo-Cego , Ácidos Graxos Voláteis/análise , Fezes/química , Feminino , Humanos , Lactente , Fórmulas Infantis/química , Fórmulas Infantis/microbiologia , Recém-Nascido , Intestinos/microbiologia , Masculino , Leite Humano/química , Oligossacarídeos/análise , RNA Ribossômico 18S/isolamento & purificação , Análise de Sequência de DNA
17.
Sci Transl Med ; 8(349): 349ra100, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27464748

RESUMO

More than 1 million HIV-exposed, uninfected infants are born annually to HIV-positive mothers worldwide. This growing population of infants experiences twice the mortality of HIV-unexposed infants. We found that although there were very few differences seen in the microbiomes of mothers with and without HIV infection, maternal HIV infection was associated with changes in the microbiome of HIV-exposed, uninfected infants. Furthermore, we observed that human breast milk oligosaccharides were associated with bacterial species in the infant microbiome. The disruption of the infant's microbiome associated with maternal HIV infection may contribute to the increased morbidity and mortality of HIV-exposed, uninfected infants.


Assuntos
Infecções por HIV/transmissão , Microbiota/fisiologia , Aleitamento Materno , Estudos Transversais , Feminino , Infecções por HIV/microbiologia , Humanos , Recém-Nascido , Transmissão Vertical de Doenças Infecciosas , Leite Humano/química , Mães , Oligossacarídeos/metabolismo , Gravidez , Complicações Infecciosas na Gravidez/microbiologia , Estudos Prospectivos , Fatores de Risco
18.
Am J Clin Nutr ; 102(6): 1381-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26511224

RESUMO

BACKGROUND: Evidence linking breastfeeding to reduced risk of developing childhood obesity is inconclusive, yet previous studies have not considered variation in specific components of breast milk that may affect early development. OBJECTIVE: We examined whether differences in the composition of human milk oligosaccharides (HMOs) correlate with infant growth and body composition at 1 and 6 mo of age. DESIGN: Twenty-five mother-infant dyads were recruited from the University Hospital at the University of Oklahoma Health Sciences Center. Infants were breastfed for 6 mo. Breast-milk and infant measures were obtained at 1 and 6 mo of infant age. HMO composition was analyzed by high-pressure liquid chromatography, and infant growth (length and weight) and body composition (percentage fat, total fat, lean mass) were measured by dual-energy X-ray absorptiometry. Relations between HMOs and infant growth and body composition were examined by using multiple linear regression. A priori covariates included maternal prepregnancy body mass index, pregnancy weight gain, and infant age and sex. RESULTS: Higher HMO diversity and evenness at 1 mo were associated with lower total and percentage fat mass at 1 mo. At 1 mo, each 1-µg/mL increase in lacto-N-fucopentaose (LNFP) I was associated with a 0.40-kg lower infant weight (P = 0.03). At 6 mo, each 1-µg/mL increase in LNFPI was associated with a 1.11-kg lower weight (P = 0.03) and a 0.85-g lower lean mass (P = 0.01). At 6 mo, each 1-µg/mL increase in LNFPI was associated with a 0.79-g lower fat mass (P = 0.02), whereas disialyl-lacto-N-tetraose and LNFPII were associated with a 1.92-g (P = 0.02) and 0.42-g (P = 0.02) greater fat mass, respectively. At 6 mo, each 1-µg/mL increase in fucosyl-disialyl-lacto-N-hexaose and lacto-N-neotetraose was associated with 0.04% higher (P = 0.03) and 0.03% lower (P < 0.01) body fat, respectively. CONCLUSION: These findings support the hypothesis that differences in HMO composition in mother's milk are associated with infant growth and body composition. This trial was registered at clinicaltrials.gov as NCT02535637.


Assuntos
Adiposidade , Aleitamento Materno , Desenvolvimento Infantil , Fenômenos Fisiológicos da Nutrição do Lactente , Leite Humano/química , Oligossacarídeos/uso terapêutico , Obesidade Infantil/prevenção & controle , Estatura , Estudos de Coortes , Feminino , Seguimentos , Humanos , Recém-Nascido , Masculino , Oklahoma/epidemiologia , Oligossacarídeos/efeitos adversos , Oligossacarídeos/análise , Obesidade Infantil/epidemiologia , Obesidade Infantil/etiologia , Reprodutibilidade dos Testes , Risco , Aumento de Peso
19.
Pediatr Infect Dis J ; 32(12): e473-5, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23899964

RESUMO

Analysis of milk from 247 HIV-infected Zambian mothers showed that galectin-3 binding protein concentrations were significantly higher among HIV-infected mothers who transmitted HIV through breast-feeding (6.51 ± 2.12 µg/mL) than among nontransmitters but were also correlated with higher milk and plasma HIV RNA copies/mL and lower CD4+ cell counts. The association between galectin-3 binding protein and postnatal transmission was attenuated after adjustment for milk and plasma HIV load and CD4+ cell counts. This suggests that although milk galectin-3 binding protein is a marker of advanced maternal disease, it does not independently modify transmission risk.


Assuntos
Antígenos de Neoplasias/análise , Biomarcadores Tumorais/análise , Aleitamento Materno , Proteínas de Transporte/análise , Glicoproteínas/análise , Infecções por HIV/transmissão , Transmissão Vertical de Doenças Infecciosas , Leite Humano/química , Leite Humano/virologia , Estudos de Casos e Controles , Feminino , Infecções por HIV/epidemiologia , Infecções por HIV/metabolismo , Humanos , Fatores de Risco , Carga Viral , Zâmbia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa