Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
3.
Cancer Res ; 62(15): 4339-45, 2002 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12154038

RESUMO

A sucrose-rich diet has repeatedly been observed to have cocarcinogenic actions in the colon and liver of rats and to increase the number of aberrant crypt foci in rat colon. To investigate whether sucrose-rich diets might directly increase the genotoxic response in the rat colon or liver, we have added sucrose to the diet of Big Blue rats, a strain of Fischer rats carrying 40 copies of the lambda-phage on chromosome 4. Dietary sucrose was provided to the rats for 3 weeks at four dose levels including the background level in the purified diet [3.4% (control), 6.9%, 13.8%, or 34.5%] without affecting the overall energy and carbohydrate intake. We observed a dose-dependent increase in the mutation frequency at the cII site in the colonic mucosa with increased sucrose levels, reaching a 129% increase at the highest dose level. This would indicate a direct or indirect genotoxic effect of a sucrose-rich diet. No significant increase in mutations was observed in the liver. To seek an explanation for this finding, a variety of parameters were examined representing different mechanisms, including increased oxidative stress, changes in oxidative defense, effects on DNA repair, or changes in the background levels of DNA adducts. Sucrose did not increase the number of DNA strand breaks or oxidized bases assessed as endonuclease III-sensitive sites or 8-oxodeoxyguanosine in colon or liver. DNA repair capacity as determined by expression of the rERCC1 or rOGG1 genes was not increased in colon or liver, but the background level of DNA adducts (I-compounds) as determined by (32)P postlabeling was significantly decreased in colon. This decrease in colon I-compounds correlated inversely with both mutation frequency and ERCC1 DNA repair gene expression. Dietary sucrose did not change liver apoptosis or cell turnover as determined by the terminal deoxynucleotidyl transferase-mediated biotinylated deoxyuridine triphosphate nick end labeling assay and proliferating cell nuclear antigen. An increase in liver ascorbate was also observed, whereas oxidative damage was not observed in proteins or lipids in liver cytosol or in blood plasma. We conclude that a sucrose-rich diet directly or indirectly increases the mutation frequency in rat colon in a dose-dependent manner and concomitantly decreases the level of background DNA adducts, without a direct effect on the expression of major DNA repair enzyme systems. We also conclude that an oxidative mechanism for this effect of sucrose is unlikely. This is the first demonstration of a genotoxic action of increased dietary sucrose in vivo. Both sucrose intake and colon cancer rates are high in the Western world, and our present results call for an examination of a possible direct relationship between the two.


Assuntos
Colo/efeitos dos fármacos , Colo/fisiologia , Carboidratos da Dieta/efeitos adversos , Mutação , Sacarose/efeitos adversos , Animais , Cocarcinogênese , Colo/metabolismo , Neoplasias do Colo/etiologia , Neoplasias do Colo/genética , Dano ao DNA , Reparo do DNA , Dieta/efeitos adversos , Carboidratos da Dieta/administração & dosagem , Relação Dose-Resposta a Droga , Mucosa Intestinal/metabolismo , Mucosa Intestinal/fisiologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/fisiologia , Masculino , Testes de Mutagenicidade , Estresse Oxidativo , Lesões Pré-Cancerosas/etiologia , Lesões Pré-Cancerosas/genética , Ratos , Ratos Endogâmicos F344 , Sacarose/administração & dosagem
4.
Toxicology ; 371: 12-16, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27639665

RESUMO

A public appeal has been advanced by a large group of scientists, concerned that science has been misused in attempting to quantify and regulate unmeasurable hazards and risks.1 The appeal recalls that science is unable to evaluate hazards that cannot be measured, and that science in such cases should not be invoked to justify risk assessments in health, safety and environmental regulations. The appeal also notes that most national and international statutes delineating the discretion of regulators are ambiguous about what rules of evidence ought to apply. Those statutes should be revised to ensure that the evidence for regulatory action is grounded on the standards of the scientific method, whenever feasible. When independent scientific evidence is not possible, policies and regulations should be informed by publicly debated trade-offs between socially desirable uses and social perceptions of affordable precaution. This article explores the premises, implications and actions supporting the appeal and its objectives.


Assuntos
Saúde/legislação & jurisprudência , Saúde/normas , Legislação como Assunto/normas , Medição de Risco/legislação & jurisprudência , Medição de Risco/normas , Segurança/legislação & jurisprudência , Segurança/normas , Ciência/legislação & jurisprudência , Ciência/normas , Toxicologia/legislação & jurisprudência , Toxicologia/normas , Animais , Modelos Animais de Doenças , Humanos
5.
Mutat Res ; 550(1-2): 123-32, 2004 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-15135646

RESUMO

Several chemical mutagens and carcinogens, including polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs, are adsorbed to the surface of diesel exhaust particles (DEP). DEP can induce formation of reactive oxygen species and cause oxidative DNA damage as well as bulky carcinogen DNA adducts. Lung tissue is a target organ for DEP induced cancer following inhalation. Recent studies have provided evidence that the lung is also a target organ for DNA damage and cancer after oral exposure to other complex mixtures of PAHs. The genotoxic effect of oral administration of DEP was investigated, in terms of markers of DNA damage, mutations and repair, in the lung of Big Blue rats fed a diet with 0, 0.2, 0.8, 2, 8, 20 or 80 mg DEP/kg feed for 21 days. There was no significant increase in the mutation frequency in the cII gene. However, an increase of DNA damage measured as DNA strand breaks (comet assay) and bulky DNA adducts (32P post labeling) was observed. The level of DNA strand breaks increased significantly at all dose levels while the level of DNA adducts increased significantly only at the intermediate dose levels. Similarly, the number of oxidized DNA bases measured as endonuclease III and fapyguanine glycosylase (FPG) sensitive sites increased at the intermediate dose levels. The induction of DNA damage by DEP exposure did not increase the expression of the repair genes OGG1 and ERCC1 at the mRNA level. The present study indicates that the lung is a target organ for primary DNA damage following oral exposure to DEP. DNA damage was induced following exposure to relatively low levels of DEP, but under the conditions used in the present experiment DNA damage did not result in an increased mutation rate.


Assuntos
Dano ao DNA , DNA/efeitos dos fármacos , Emissões de Veículos , Animais , Ensaio Cometa , Adutos de DNA , Análise Mutacional de DNA , Relação Dose-Resposta a Droga , Poluentes Ambientais , Masculino , Mutagênicos , Mutação , Oxigênio/metabolismo , RNA Mensageiro/metabolismo , Ratos , Espécies Reativas de Oxigênio , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa