Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Int J Mol Sci ; 24(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37298441

RESUMO

The sea cucumber body wall was subjected to enzymatic hydrolysis using papain. The relationship between the enzyme concentration (1-5% w/w protein weight) and hydrolysis time (60-360 min) and the degree of hydrolysis (DH), yield, antioxidant activities, and antiproliferative activity in a HepG2 liver cancer cell line was determined. The surface response methodology showed that the optimum conditions for the enzymatic hydrolysis of sea cucumber were a hydrolysis time of 360 min and 4.3% papain. Under these conditions, a 12.1% yield, 74.52% DH, 89.74% DPPH scavenging activity, 74.92% ABTS scavenging activity, 39.42% H2O2 scavenging activity, 88.71% hydroxyl radical scavenging activity, and 9.89% HepG2 liver cancer cell viability were obtained. The hydrolysate was produced under optimum conditions and characterized in terms of its antiproliferative effect on the HepG2 liver cancer cell line.


Assuntos
Holothuria , Neoplasias Hepáticas , Pepinos-do-Mar , Animais , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Hidrólise , Pepinos-do-Mar/química , Papaína , Peróxido de Hidrogênio , Neoplasias Hepáticas/tratamento farmacológico , Linhagem Celular , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/química
2.
Toxics ; 12(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38922108

RESUMO

Chiang Mai province of Thailand is known for having the highest natural background radiation in the country, as well as being recognized as one of the world's most polluted cities for air quality. This represents the major contributor to the development of lung cancer. This research aims to estimate the comprehensive dose of both internal and external exposure due to natural background radiation and related health perspectives in the highly polluted area of Chiang Mai. The average values of indoor radon and thoron concentrations in 99 houses over 6 months were 40.8 ± 22.6 and 17.8 ± 16.3 Bq/m3, respectively. These results exceed the worldwide value for indoor radon and thoron (40 and 10 Bq/m3), respectively. During burning season, the average values of indoor radon (56.7 ± 20 Bq/m3) and thoron (20.8 ± 20.4 Bq/m3) concentrations were higher than the world-wide averages. The radon concentration in drinking water (56 samples) varied from 0.1 to 91.9 Bq/L, with an average value of 9.1 ± 22.8 Bq/L. Most of the drinking water samples (87%) fell below the recommended maximum contamination limit of 11.1 Bq/L. The average values of natural radionuclide (226Ra, 232Th and 40K) in 48 soil samples were 47 ± 20.9, 77.9 ± 29.7 and 700.1 ± 233 Bq/kg, respectively. All values were higher than the worldwide average of 35, 30 and 400 Bq/kg, respectively. The average value of outdoor absorbed gamma dose rate (98 ± 32.5 nGy/h) exceeded the worldwide average of 59 nGy/h. Meanwhile, the average activity concentrations of 226Ra, 232Th and 40K in 25 plant food samples were 2.7 ± 0.1, 3.2 ± 1.6 and 1000.7 ± 1.9 Bq/kg, respectively. The 40K concentration was the most predominant in plant foods. The highest concentrations of 226Ra, 232Th and 40K were found in Chinese cabbage, celery and cilantro, respectively. The total annual effective dose for residents in the study area varied from 0.6 to 4.3 mSv, with an average value of 1.4 mSv. This indicates a significant long-term public health hazard due to natural background radiation and suggests a heightened radiation risk for the residents. The excess lifetime cancer risk value (5.4) associated with natural background radiation was found to be higher than the recommended value. Moreover, the number of lung cancer cases per year per million average of 25.2 per million persons per year was in the limit range 170-230 per million people. Overall, our results will be used for future decision making in the prevention of lung cancer risk associated with natural background radiation.

3.
Mutat Res ; 756(1-2): 78-85, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-23867854

RESUMO

Existing research has not fully explained how different types of ionizing radiation (IR) modulate the responses of cell populations or tissues. In our previous work, we showed that gap junction intercellular communication (GJIC) mediates the propagation of stressful effects among irradiated cells exposed to high linear energy transfer (LET) radiations, in which almost every cells is traversed by an IR track. In the present study, we conducted an in-depth study of the role of GJIC in modulating the repair of potentially lethal damage (PLDR) and micronuclei formation in cells exposed to low- or high-LET IR. Confluent human fibroblasts were exposed in the presence or absence of a gap junction inhibitor to 200kV X rays (LET∼1.7keV/µm), carbon ions (LET∼76keV/µm), silicon ions (LET∼113keV/µm) or iron ions (LET∼400keV/µm) that resulted in isosurvival levels. The fibroblasts were incubated for various times at 37°C. As expected, high-LET IR were more effective than were low-LET X rays at killing cells and damaging DNA shortly after irradiation. However, when cells were held in a confluent state for several hours, PLDR associated with a reduction in DNA damage, occurred only in cells exposed to X rays. Interestingly, inhibition of GJIC eliminated the enhancement of toxic effects, which resulted in an increase of cell survival and reduction in the level of micronucleus formation in cells exposed to high, but not in those exposed to low-LET IR. The experiment shows that gap-junction communication plays an important role in the propagation of stressful effects among irradiated cells exposed to high-LET IR while GJIC has only a minimal effect on PLDR and DNA damage following low-LET irradiation. Together, our results show that PLDR and induction of DNA damage clearly depend on gap-junction communication and radiation quality.


Assuntos
Comunicação Celular/efeitos da radiação , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , Fibroblastos/efeitos da radiação , Junções Comunicantes/efeitos da radiação , Transferência Linear de Energia , Comunicação Celular/fisiologia , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Dano ao DNA/genética , Reparo do DNA/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Junções Comunicantes/metabolismo , Humanos , Testes para Micronúcleos , Raios X
4.
Biology (Basel) ; 12(12)2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38132311

RESUMO

Tumor hypoxia is the most common feature of radioresistance to the radiotherapy (RT) of lung cancer and results in poor clinical outcomes. High-linear energy transfer (LET) radiation is a novel RT technique to overcome this problem. However, a limited number of studies have been elucidated on the underlying mechanism(s) of RIBE and RISBE in cancer cells exposed to high-LET radiation under hypoxia. Here, we developed a new method to investigate the RIBE and RISBE under hypoxia using the SPICE-QST proton microbeams and a layered tissue co-culture system. Normal lung fibroblast (WI-38) and lung cancer (A549) cells were exposed in the range of 06 Gy of proton microbeams, wherein only ~0.04-0.15% of the cells were traversed by protons. Subsequently, primary bystander A549 cells were co-cultured with secondary bystander A549 cells in the presence or absence of a GJIC and NO inhibitor using co-culture systems. Studies show that there are differences in RIBE in A549 and WI-38 primary bystander cells under normoxia and hypoxia. Interestingly, treatment with a GJIC inhibitor showed an increase in the toxicity of primary bystander WI-38 cells but a decrease in A549 cells under hypoxia. Our results also show the induction of RISBE in secondary bystander A549 cells under hypoxia, where GJIC and NO inhibitors reduced the stressful effects on secondary bystander A549 cells. Together, these preliminary results, for the first time, represented the involvement of intercellular communications through GJIC in propagation of RIBE and RISBE in hypoxic cancer cells.

5.
Radiat Res ; 197(2): 122-130, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34634126

RESUMO

Radiation-induced bystander effect (RIBE) has been identified as an important contributing factor to tumor resistance and normal tissue damage. However, the RIBE in cancer and normal cells under hypoxia remain unclear. In this study, confluent A549 cancer and WI-38 normal cells were subjected to condition of hypoxia or normoxia, before exposure to high-LET protons microbeam. After 6 h incubation, cells were harvested and assayed for colony formation, micronucleus formation, chromosome aberration and western blotting. Our results show that there were differences of RIBE in bystander A549 and WI-38 cells under hypoxia and normoxia. The differences were also observed in the roles of HIF-1α expression in bystander A549 and WI-38 cells under both conditions. Furthermore, inhibition of gap junction intercellular communication (GJIC) showed a decrease in toxicity of hypoxia-treated bystander A549 cells, but increased in bystander WI-38 cells. These findings clearly support that GJIC protection of bystander normal cells from toxicity while enhancing in bystander cancer cells. Together, the data show a promising strategy for high-LET radiation in designing an entire new line of drugs, either increase or restore GJIC in bystander cancer cells which in turn leads to enhancement of radiation accuracy for treatment of hypoxic tumors.


Assuntos
Junções Comunicantes
6.
Life (Basel) ; 12(6)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35743884

RESUMO

This paper presents the first measurement of the investigation of the health impacts of indoor radon exposure and external dose from terrestrial radiation in Chiang Mai province during the dry season burning between 2018 and 2020. Indoor radon activity concentrations were carried out using a total of 220 RADUET detectors in 45 dwellings of Chiang Mai (7 districts) during burning and non-burning seasons. Results show that indoor radon activity concentration during the burning season (63 ± 33 Bq/m3) was significantly higher (p < 0.001) compared to the non-burning season (46 ± 19 Bq/m3), with an average annual value of 55 ± 28 Bq/m3. All values of indoor radon activity concentration were greater than the national (16 Bq/m3) and worldwide (39 Bq/m3) average values. In addition, the external dose from terrestrial radiation was measured using a car-borne survey during the burning season in 2018. The average absorbed rate in the air was 66 nGy/h, which is higher than the worldwide average value of 59 nGy/h. This might be due to the high activity concentrations of 238U and 323Th in the study area. With regards to the health risk assessment, the effective dose due to indoor radon exposure, external (outdoor) effective dose, and total annual effective dose were 1.6, 0.08, and 1.68 mSv/y, respectively. The total annual effective dose is higher than the worldwide average of 1.15 mSv/y. The excess lifetime cancer risk and radon-induced lung cancer risk during the burning season were 0.67% and 28.44 per million persons per year, respectively. Our results substantiate that indoor radon and natural radioactive elements in the air during the burning season are important contributors to the development of lung cancer.

7.
Sci Rep ; 12(1): 5169, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35338199

RESUMO

Radon exposure is the second leading cause of lung cancer, after smoking. In upper northern Thailand (UNT), lung cancer incidence was frequently reported by Thailand National Cancer Institute. Besides smoking, radon exposure may also influence the high lung cancer incidence in this region. Indoor radon concentrations were measured in 192 houses in eight provinces of UNT. Indoor radon concentrations ranged from 11 to 405 Bq m-3 and estimated annual effective dose ranged from 0.44 to 12.18 mSv y-1. There were significant differences in indoor radon concentrations between the houses of lung cancer cases and healthy controls (p = 0.033). We estimated that 26% of lung cancer deaths in males and 28% in females were attributable to indoor radon exposure in this region. Other factors influencing indoor radon levels included house characteristics and ventilation. The open window-to-wall ratio was negatively associated with indoor radon levels (B = -0.69, 95% CI -1.37, -0.02) while the bedroom location in the house and building material showed no association. Indoor radon hence induced the fractal proportion of lung cancer deaths in UNT.


Assuntos
Poluentes Radioativos do Ar , Poluição do Ar em Ambientes Fechados , Neoplasias Pulmonares , Radônio , Poluentes Radioativos do Ar/análise , Poluição do Ar em Ambientes Fechados/efeitos adversos , Poluição do Ar em Ambientes Fechados/análise , Feminino , Habitação , Humanos , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/etiologia , Masculino , Radônio/efeitos adversos , Radônio/análise , Tailândia/epidemiologia
8.
Life (Basel) ; 11(11)2021 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-34833148

RESUMO

Radon is a major cause of lung cancer (LC) deaths among non-smokers worldwide. However, no serum biomarker for screening of LC risk in high residential radon (HRR) areas is available. Therefore, the aim of this study was to determine diagnostic values of serum carcinoembryonic antigen (CEA), cytokeratin 19 fragment (Cyfra21-1), human epididymis protein 4 (HE4), interleukin 8 (IL-8), migration inhibitory factor (MIF), tumor nuclear factor-alpha (TNF-α) and vascular endothelial growth factors (VEGF) occurring in high radon areas. Seventy-five LC non-smoker patients and seventy-five healthy controls (HC) were enrolled in this study. Among the HC groups, twenty-five HC were low residential radon (LRR) and fifty HC were HRR. Significantly higher (p < 0.0004) serum levels of CEA, Cyfra21-1, IL-8 and VEGF were found in the LC compared with the LRR and HRR groups. More importantly, significantly higher levels (p < 0.009) of serum CEA, Cyfra21-1 and IL-8 were observed in HRR compared with the LRR group. Likewise, a ROC curve demonstrated that serum CEA and Cyfra21-1 could better distinguish LC risk from HRR groups than IL-8. These results indicated that serum CEA and Cyfra21-1 were significantly increased in the HRR group and may be considered as potential biomarkers for individuals at high-risk to develop LC.

9.
Oncol Res ; 28(2): 161-175, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-31727206

RESUMO

Radiotherapy (RT) is an important treatment for non-small cell lung cancer (NSCLC). However, the major obstacles to successful RT include the low radiosensitivity of cancer cells and the restricted radiation dose, which is given without damaging normal tissues. Therefore, the sensitizer that increases RT efficacy without dose escalation will be beneficial for NSCLC treatment. Eurycomalactone (ECL), an active quassinoid isolated from Eurycoma longifolia Jack, has been demonstrated to possess anticancer activity. In this study, we aimed to investigate the effect of ECL on sensitizing NSCLC cells to X-radiation (X-ray) as well as the underlying mechanisms. The results showed that ECL exhibited selective cytotoxicity against the NSCLC cells A549 and COR-L23 compared to the normal lung fibroblast. Clonogenic survival results indicated that ECL treatment prior to irradiation synergistically decreased the A549 and COR-L23 colony number. ECL treatment reduced the expression of cyclin B1 and CDK1/2 leading to induce cell cycle arrest at the radiosensitive G2/M phase. Moreover, ECL markedly delayed the repair of radiation-induced DNA double-strand breaks (DSBs). In A549 cells, pretreatment with ECL not only delayed the resolving of radiation-induced γ-H2AX foci but also blocked the formation of 53BP1 foci at the DSB sites. In addition, ECL pretreatment attenuated the expression of DNA repair proteins Ku-80 and KDM4D in both NSCLC cells. Consequently, these effects led to an increase in apoptosis in irradiated cells. Thus, ECL radiosensitized the NSCLC cells to X-ray via G2/M arrest induction and delayed the repair of X-ray-induced DSBs. This study offers a great potential for ECL as an alternative safer radiosensitizer for increasing the RT efficiency against NSCLC.


Assuntos
Proteína Quinase CDC2/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Lactonas/farmacologia , Células A549 , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ciclina B1/genética , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Eurycoma/química , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Tolerância a Radiação/efeitos dos fármacos , Radiossensibilizantes/farmacologia
10.
Radiat Res ; 191(2): 211-216, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30526323

RESUMO

Increased understanding of radiation-induced secondary bystander effect (RISBE) is relevant to radiation therapy since it likely contributes to normal tissue injury and tumor recurrence, subsequently resulting in treatment failure. In this work, we developed a simple method based on proton microbeam radiation and a transwell insert co-culture system to elucidate the RISBE between irradiated human lung cancer cells and nonirradiated human normal cells. A549 lung cancer cells received a single dose or fractionated doses of proton microbeam radiation to generate the primary bystander cells. These cells were then seeded on the top of the insert with secondary bystander WI-38 normal cells growing underneath in the presence or absence of gap junction intercellular communication (GJIC) inhibitor, 18-α-glycyrrhetnic acid (AGA). Cells were co-cultured before harvesting and assayed for micronuclei formation. The results of this work showed that fractionated doses of protons caused less DNA damage in the secondary bystander WI-38 cells compared to a single radiation dose, where the means differ by 20%. However, the damaging effect in the secondary bystander normal cells could be eliminated when treated with AGA. This novel work reflects our effort to demonstrate that GJIC plays a major role in the RISBE generated from the primary bystander cancer cells.


Assuntos
Efeito Espectador/efeitos da radiação , Fracionamento da Dose de Radiação , Prótons , Células A549 , Linhagem Celular , Dano ao DNA , Junções Comunicantes/efeitos dos fármacos , Ácido Glicirretínico/farmacologia , Humanos
11.
Artigo em Inglês | MEDLINE | ID: mdl-30274365

RESUMO

Long-term exposure to radon has been determined to be the second leading cause of lung cancer after tobacco smoking. However, an in-depth study of this topic has not been explicitly carried out in Chiang Mai (Thailand). This paper presents the results of an indoor radon level measurement campaign in dwellings of Chiang Mai using total of 110 detectors (CR-39) during one year. The results show that the average radon levels varied from 35 to 219 Bq/m³, with an overall average of 57 Bq/m³. The finding also shows that the average value is higher than the global average value of 39 Bq/m³. In addition, to examine the cause of lung cancer development among people with risk of chronic exposure to radon during their lifetime, 35 non-smoker lung cancer patients and 33 healthy nonsmokers were analyzed for telomere length. As expected, telomere length was significantly shorter in lung cancer patients than in healthy nonsmokers. Among healthy nonsmokers, the telomere length was significantly shorter in a high radon group than in an unaffected low radon group. To the best of our knowledge, our research provides the first attempt in describing the shortened telomeres in areas with high levels of environmental radon that might be related to lung cancer development.


Assuntos
Poluentes Radioativos do Ar/toxicidade , Poluição do Ar em Ambientes Fechados , Habitação , Neoplasias Pulmonares/etiologia , Radônio , Encurtamento do Telômero , Biomarcadores Tumorais , Feminino , Humanos , Projetos Piloto , Fatores de Risco , Tailândia
12.
Radiat Res ; 188(3): 335-341, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28686544

RESUMO

The purpose of this study was to compare the biological effects of fractionated doses versus a single dose of high-LET carbon ions in bystander normal cells, and determine the effect on their progeny using the layered tissue co-culture system. Briefly, confluent human glioblastoma (T98G) cells received a single dose of 6 Gy or three daily doses of 2 Gy carbon ions, which were then seeded on top of an insert with bystander normal skin fibroblasts (NB1RGB) growing underneath. Cells were co-cultured for 6 h or allowed to grow for 20 population doublings, then harvested and assayed for different end points. A single dose of carbon ions resulted in less damage in bystander normal NB1RGB cells than the fractionated doses. In contrast, the progeny of bystander NB1RGB cells co-cultured with T98G cells exposed to fractionated doses showed less damage than progeny from bystander cells co-cultured with single dose glioblastoma cells. Furthermore, inhibition of gap junction communication demonstrated its involvement in the stressful effects in bystander cells and their progeny. These results indicate that dose fractionation reduced the late effect of carbon-ion exposure in the progeny of bystander cells compared to the effect in the initial bystander cells.


Assuntos
Efeito Espectador/fisiologia , Efeito Espectador/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Fracionamento da Dose de Radiação , Fibroblastos/efeitos da radiação , Neoplasias Experimentais/radioterapia , Linhagem Celular , Sobrevivência Celular/fisiologia , Relação Dose-Resposta à Radiação , Fibroblastos/citologia , Fibroblastos/fisiologia , Radioterapia com Íons Pesados/métodos , Humanos , Neoplasias Experimentais/patologia , Neoplasias Experimentais/fisiopatologia , Resultado do Tratamento
13.
Mutat Res ; 803-805: 1-8, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28689138

RESUMO

Understanding the mechanisms underlying the radiation-induced bystander effect (RIBE) and bi-directional signaling between irradiated carcinoma cells and their surrounding non-irradiated normal cells is relevant to cancer radiotherapy. The present study investigated propagation of RIBE signals between human lung carcinoma A549 cells and normal lung fibroblast WI38 cells in bystander cells, either directly or indirectly contacting irradiated A549 cells. We prepared A549-GFP/WI38 co-cultures and A549-GFP/A549 co-cultures, in which A549-GFP cells stably expressing H2BGFP were co-cultured with either A549 cells or WI38 cells, respectively. Using the SPICE-NIRS microbeam, only the A549-GFP cells were irradiated with 500 protons per cell. The level of γ-H2AX, a marker for DNA double-strand breaks (DSB), was subsequently measured for up to 24h post-irradiation in three categories of cells: (1) "targeted"/irradiated A549-GFP cells; (2) "neighboring"/non-irradiated cells directly contacting the "targeted" cells; and (3) "distant"/non-irradiated cells, which were not in direct contact with the "targeted" cells. We found that DSB repair in targeted A549-GFP cells was enhanced by co-cultured WI38 cells. The bystander response in A549-GFP/A549 cell co-cultures, as marked by γ-H2AX levels at 8h post-irradiation, showed a decrease to non-irradiated control level when approaching 24h, while the neighboring/distant bystander WI38 cells in A549-GFP/WI38 co-cultures was maintained at a similar level until 24h post-irradiation. Surprisingly, distant A549-GFP cells in A549-GFP/WI38 co-cultures showed time dependency similar to bystander WI38 cells, but not to distant cells in A549-GFP/A549 co-cultures. These observations indicate that γ-H2AX was induced in WI38 cells as a result of RIBE. WI38 cells were not only involved in rescue of targeted A549, but also in the modification of RIBE against distant A549-GFP cells. The present results demonstrate that radiation-induced bi-directional signaling had extended a profound influence on cellular sensitivity to radiation as well as the sensitivity to RIBE.


Assuntos
Efeito Espectador/efeitos da radiação , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Fibroblastos/efeitos da radiação , Transdução de Sinais , Células A549 , Linhagem Celular , Técnicas de Cocultura , Histonas/metabolismo , Humanos , Neoplasias Pulmonares/radioterapia , Prótons
14.
Int J Radiat Biol ; 91(1): 62-70, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25084840

RESUMO

PURPOSE: Radiation-induced bystander effects have important implications in radiotherapy. Their persistence in normal cells may contribute to risk of health hazards, including cancer. This study investigates the role of radiation quality and gap junction intercellular communication (GJIC) in the propagation of harmful effects in progeny of bystander cells. MATERIALS AND METHODS: Confluent human skin fibroblasts were exposed to microbeam radiations with different linear energy transfer (LET) at mean absorbed doses of 0.4 Gy by which 0.036-0.4% of the cells were directly targeted by radiation. Following 20 population doublings, the cells were harvested and assayed for micronucleus formation, gene mutation and protein oxidation. RESULTS: Our results showed that expression of stressful effects in the progeny of bystander cells is dependent on LET. The progeny of bystander cells exposed to X-rays (LET ∼6 keV/µm) or protons (LET ∼11 keV/µm) showed persistent oxidative stress, which correlated with increased micronucleus formation and mutation at the hypoxanthine-guanine phosphoribosyl-transferase (HPRT) locus. Such effects were not observed after irradiation by carbon ions (LET ∼103 keV/µm). Interestingly, progeny of bystander cells from cultures exposed to protons or carbon ions under conditions where GJIC was inhibited harbored reduced oxidative and genetic damage. This mitigating effect was not detected when the cultures were exposed to X-rays. CONCLUSIONS: These findings suggest that cellular exposure to proton and heavy charged particle with LET properties similar to those used here can reduce the risk of lesions associated with cancer. The ability of cells to communicate via gap junctions at the time of irradiation appears to impact residual damage in progeny of bystander cells.


Assuntos
Efeito Espectador/efeitos da radiação , Carbono/efeitos adversos , Fibroblastos/citologia , Fibroblastos/efeitos da radiação , Neoplasias Induzidas por Radiação/etiologia , Prótons/efeitos adversos , Dano ao DNA , Relação Dose-Resposta à Radiação , Fibroblastos/metabolismo , Junções Comunicantes/efeitos da radiação , Humanos , Transferência Linear de Energia , Neoplasias Induzidas por Radiação/patologia , Estresse Oxidativo/efeitos da radiação , Risco , Fatores de Tempo , Raios X/efeitos adversos
15.
Antioxid Redox Signal ; 20(9): 1501-23, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24111926

RESUMO

SIGNIFICANCE: During deep space travel, astronauts are often exposed to high atomic number (Z) and high-energy (E) (high charge and high energy [HZE]) particles. On interaction with cells, these particles cause severe oxidative injury and result in unique biological responses. When cell populations are exposed to low fluences of HZE particles, a significant fraction of the cells are not traversed by a primary radiation track, and yet, oxidative stress induced in the targeted cells may spread to nearby bystander cells. The long-term effects are more complex because the oxidative effects persist in progeny of the targeted and affected bystander cells, which promote genomic instability and may increase the risk of age-related cancer and degenerative diseases. RECENT ADVANCES: Greater understanding of the spatial and temporal features of reactive oxygen species bursts along the tracks of HZE particles, and the availability of facilities that can simulate exposure to space radiations have supported the characterization of oxidative stress from targeted and nontargeted effects. CRITICAL ISSUES: The significance of secondary radiations generated from the interaction of the primary HZE particles with biological material and the mitigating effects of antioxidants on various cellular injuries are central to understanding nontargeted effects and alleviating tissue injury. FUTURE DIRECTIONS: Elucidation of the mechanisms underlying the cellular responses to HZE particles, particularly under reduced gravity and situations of exposure to additional radiations, such as protons, should be useful in reducing the uncertainty associated with current models for predicting long-term health risks of space radiation. These studies are also relevant to hadron therapy of cancer.


Assuntos
Radiação Cósmica/efeitos adversos , Voo Espacial , Animais , Gravidade Alterada , Humanos , Oxirredução/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Radiação Ionizante , Espécies Reativas de Oxigênio/metabolismo
16.
J Radiat Res ; 54(2): 251-9, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23139176

RESUMO

In multicellular organisms, intercellular communication is essential for homeostatic functions and has a major role in tissue responses to stress. Here, we describe the effects of expression of different connexins, which form gap junction channels with different permeabilities, on the responses of human cells to ionizing radiation. Exposure of confluent HeLa cell cultures to (137)Cs γ rays, 3.7 MeV α particles, 1000 MeV protons or 1000 MeV/u iron ions resulted in distinct effects when the cells expressed gap junction channels composed of either connexin26 (Cx26) or connexin32 (Cx32). Irradiated HeLa cells expressing Cx26 generally showed decreased clonogenic survival and reduced metabolic activity relative to parental cells lacking gap junction communication. In contrast, irradiated HeLa cells expressing Cx32 generally showed enhanced survival and greater metabolic activity relative to the control cells. The effects on clonogenic survival correlated more strongly with effects on metabolic activity than with DNA damage as assessed by micronucleus formation. The data also showed that the ability of a connexin to affect clonogenic survival following ionizing radiation can depend on the specific type of radiation. Together, these findings show that specific types of connexin channels are targets that may be exploited to enhance radiotherapeutic efficacy and to formulate countermeasures to the harmful effects of specific types of ionizing radiation.


Assuntos
Efeito Espectador/fisiologia , Efeito Espectador/efeitos da radiação , Sobrevivência Celular/fisiologia , Conexinas/metabolismo , Dano ao DNA/fisiologia , Sobrevivência Celular/efeitos da radiação , Conexina 26 , Relação Dose-Resposta à Radiação , Regulação da Expressão Gênica/fisiologia , Regulação da Expressão Gênica/efeitos da radiação , Células HeLa , Humanos , Doses de Radiação , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos da radiação , Proteína beta-1 de Junções Comunicantes
17.
Radiat Res ; 180(4): 367-75, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23987132

RESUMO

Understanding the mechanisms underlying the bystander effects of low doses/low fluences of low- or high-linear energy transfer (LET) radiation is relevant to radiotherapy and radiation protection. Here, we investigated the role of gap-junction intercellular communication (GJIC) in the propagation of stressful effects in confluent normal human fibroblast cultures wherein only 0.036-0.144% of cells in the population were traversed by primary radiation tracks. Confluent cells were exposed to graded doses from monochromatic 5.35 keV X ray (LET ~6 keV/µm), 18.3 MeV/u carbon ion (LET ~103 keV/µm), 13 MeV/u neon ion (LET ~380 keV/µm) or 11.5 MeV/u argon ion (LET ~1,260 keV/µm) microbeams in the presence or absence of 18-α-glycyrrhetinic acid (AGA), an inhibitor of GJIC. After 4 h incubation at 37°C, the cells were subcultured and assayed for micronucleus (MN) formation. Micronuclei were induced in a greater fraction of cells than expected based on the fraction of cells targeted by primary radiation, and the effect occurred in a dose-dependent manner with any of the radiation sources. Interestingly, MN formation for the heavy-ion microbeam irradiation in the absence of AGA was higher than in its presence at high mean absorbed doses. In contrast, there were no significant differences in cell cultures exposed to X-ray microbeam irradiation in presence or absence of AGA. This showed that the inhibition of GJIC depressed the enhancement of MN formation in bystander cells from cultures exposed to high-LET radiation but not low-LET radiation. Bystander cells recipient of growth medium harvested from 5.35 keV X-irradiated cultures experienced stress manifested in the form of excess micronucleus formation. Together, the results support the involvement of both junctional communication and secreted factor(s) in the propagation of radiation-induced stress to bystander cells. They highlight the important role of radiation quality and dose in the observed effects.


Assuntos
Efeito Espectador/efeitos da radiação , Fibroblastos/citologia , Fibroblastos/efeitos da radiação , Junções Comunicantes/efeitos da radiação , Células Cultivadas , Dano ao DNA , Relação Dose-Resposta à Radiação , Humanos , Transferência Linear de Energia , Método de Monte Carlo
18.
Radiat Res ; 175(3): 347-57, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21388278

RESUMO

We investigated the roles of gap junction communication and oxidative stress in modulating potentially lethal damage repair in human fibroblast cultures exposed to doses of α particles or γ rays that targeted all cells in the cultures. As expected, α particles were more effective than γ rays at inducing cell killing; further, holding γ-irradiated cells in the confluent state for several hours after irradiation promoted increased survival and decreased chromosomal damage. However, maintaining α-particle-irradiated cells in the confluent state for various times prior to subculture resulted in increased rather than decreased lethality and was associated with persistent DNA damage and increased protein oxidation and lipid peroxidation. Inhibiting gap junction communication with 18-α-glycyrrhetinic acid or by knockdown of connexin43, a constitutive protein of junctional channels in these cells, protected against the toxic effects in α-particle-irradiated cell cultures during confluent holding. Upregulation of antioxidant defense by ectopic overexpression of glutathione peroxidase protected against cell killing by α particles when cells were analyzed shortly after exposure. However, it did not attenuate the decrease in survival during confluent holding. Together, these findings indicate that the damaging effect of α particles results in oxidative stress, and the toxic effects in the hours after irradiation are amplified by intercellular communication, but the communicated molecule(s) is unlikely to be a substrate of glutathione peroxidase.


Assuntos
Partículas alfa/efeitos adversos , Fibroblastos/citologia , Fibroblastos/efeitos da radiação , Junções Comunicantes/fisiologia , Junções Comunicantes/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Doses de Radiação , Comunicação Celular/efeitos da radiação , Linhagem Celular , Conexina 43/deficiência , Conexina 43/genética , Relação Dose-Resposta a Droga , Fibroblastos/metabolismo , Raios gama/efeitos adversos , Regulação Enzimológica da Expressão Gênica/efeitos da radiação , Técnicas de Silenciamento de Genes , Glutationa Peroxidase/genética , Humanos , Pele/citologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa