Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1341389, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38698845

RESUMO

Monoclonal antibodies (mAbs) are one of the most important classes of biologics with high therapeutic and diagnostic value, but traditional methods for mAbs generation, such as hybridoma screening and phage display, have limitations, including low efficiency and loss of natural chain pairing. To overcome these challenges, novel single B cell antibody technologies have emerged, but they also have limitations such as in vitro differentiation of memory B cells and expensive cell sorters. In this study, we present a rapid and efficient workflow for obtaining human recombinant monoclonal antibodies directly from single antigen-specific antibody secreting cells (ASCs) in the peripheral blood of convalescent COVID-19 patients using ferrofluid technology. This process allows the identification and expression of recombinant antigen-specific mAbs in less than 10 days, using RT-PCR to generate linear Ig heavy and light chain gene expression cassettes, called "minigenes", for rapid expression of recombinant antibodies without cloning procedures. This approach has several advantages. First, it saves time and resources by eliminating the need for in vitro differentiation. It also allows individual antigen-specific ASCs to be screened for effector function prior to recombinant antibody cloning, enabling the selection of mAbs with desired characteristics and functional activity. In addition, the method allows comprehensive analysis of variable region repertoires in combination with functional assays to evaluate the specificity and function of the generated antigen-specific antibodies. Our approach, which rapidly generates recombinant monoclonal antibodies from single antigen-specific ASCs, could help to identify functional antibodies and deepen our understanding of antibody dynamics in the immune response through combined antibody repertoire sequence analysis and functional reactivity testing.


Assuntos
Anticorpos Monoclonais , Células Produtoras de Anticorpos , COVID-19 , Proteínas Recombinantes , SARS-CoV-2 , Humanos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/biossíntese , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , Células Produtoras de Anticorpos/imunologia , SARS-CoV-2/imunologia , COVID-19/imunologia , Anticorpos Antivirais/imunologia , Feminino
2.
Viruses ; 14(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-35062288

RESUMO

Parvovirus B19 (B19V) is a human pathogenic virus of clinical relevance, characterized by a selective tropism for erythroid progenitor cells in bone marrow. Relevant information on viral characteristics and lifecycle can be obtained from experiments involving engineered genetic systems in appropriate in vitro cellular models. Previously, a B19V genome of defined consensus sequence was designed, synthesized and cloned in a complete and functional form, able to replicate and produce infectious viral particles in a producer/amplifier cell system. Based on such a system, we have now designed and produced a derived B19V minigenome, reduced to a replicon unit. The genome terminal regions were maintained in a form able to sustain viral replication, while the internal region was clipped to include only the left-side genetic set, containing the coding sequence for the functional NS1 protein. Following transfection in UT7/EpoS1 cells, this minigenome still proved competent for replication, transcription and production of NS1 protein. Further, the B19V minigenome was able to complement B19-derived, NS1-defective genomes, restoring their ability to express viral capsid proteins. The B19V genome was thus engineered to yield a two-component system, with complementing functions, providing a valuable tool for studying viral expression and genetics, suitable to further engineering for purposes of translational research.


Assuntos
Genoma Viral , Parvovirus B19 Humano/genética , Parvovirus B19 Humano/fisiologia , Replicon , Linhagem Celular , Clonagem Molecular , Engenharia Genética , Humanos , Transcrição Gênica , Proteínas não Estruturais Virais/biossíntese , Proteínas não Estruturais Virais/genética , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa