Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
BMC Genomics ; 12: 215, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21548963

RESUMO

BACKGROUND: Schistosomiasis remains an important parasitic disease and a major economic problem in many countries. The Schistosoma mansoni genome and predicted proteome sequences were recently published providing the opportunity to identify new drug candidates. Eukaryotic protein kinases (ePKs) play a central role in mediating signal transduction through complex networks and are considered druggable targets from the medical and chemical viewpoints. Our work aimed at analyzing the S. mansoni predicted proteome in order to identify and classify all ePKs of this parasite through combined computational approaches. Functional annotation was performed mainly to yield insights into the parasite signaling processes relevant to its complex lifestyle and to select some ePKs as potential drug targets. RESULTS: We have identified 252 ePKs, which corresponds to 1.9% of the S. mansoni predicted proteome, through sequence similarity searches using HMMs (Hidden Markov Models). Amino acid sequences corresponding to the conserved catalytic domain of ePKs were aligned by MAFFT and further used in distance-based phylogenetic analysis as implemented in PHYLIP. Our analysis also included the ePK homologs from six other eukaryotes. The results show that S. mansoni has proteins in all ePK groups. Most of them are clearly clustered with known ePKs in other eukaryotes according to the phylogenetic analysis. None of the ePKs are exclusively found in S. mansoni or belong to an expanded family in this parasite. Only 16 S. mansoni ePKs were experimentally studied, 12 proteins are predicted to be catalytically inactive and approximately 2% of the parasite ePKs remain unclassified. Some proteins were mentioned as good target for drug development since they have a predicted essential function for the parasite. CONCLUSIONS: Our approach has improved the functional annotation of 40% of S. mansoni ePKs through combined similarity and phylogenetic-based approaches. As we continue this work, we will highlight the biochemical and physiological adaptations of S. mansoni in response to diverse environments during the parasite development, vector interaction, and host infection.


Assuntos
Proteínas Quinases/classificação , Proteínas Quinases/metabolismo , Proteômica , Schistosoma mansoni/enzimologia , Schistosoma mansoni/parasitologia , Animais , Domínio Catalítico , Cadeias de Markov , Filogenia , Proteínas Quinases/química , Proteoma/química , Proteoma/classificação , Proteoma/metabolismo , Schistosoma mansoni/citologia , Transdução de Sinais
2.
Front Immunol ; 10: 21, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30733716

RESUMO

Eukaryotic protein kinases (ePKs) are good medical targets for drug development in different biological systems. ePKs participate in many cellular processes, including the p38 MAPK regulation of homeostasis upon oxidative stress. We propose to assess the role of Smp38 MAPK signaling pathway in Schistosoma mansoni development and protection against oxidative stress, parasite survival, and also to elucidate which target genes have their expression regulated by Smp38 MAPK. After a significant reduction of up to 84% in the transcription level by Smp38 MAPK gene knockdown, no visible phenotypic changes were reported in schistosomula in culture. The development of adult worms was tested in vivo in mice infected with the Smp38 knocked-down schistosomula. It was observed that Smp38 MAPK has an essential role in the transformation and survival of the parasites as a low number of adult worms was recovered. Smp38 knockdown also resulted in decreased egg production, damaged adult worm tegument, and underdeveloped ovaries in females. Furthermore, only ~13% of the eggs produced developed into mature eggs. Our results suggest that inhibition of the Smp38 MAPK activity interfere in parasites protection against reactive oxygen species. Smp38 knockdown in adult worms resulted in 80% reduction in transcription levels on the 10th day, with consequent reduction of 94.4% in oviposition in vitro. In order to search for Smp38 MAPK pathway regulated genes, we used an RNASeq approach and identified 1,154 DEGs in Smp38 knockdown schistosomula. A substantial proportion of DEGs encode proteins with unknown function. The results indicate that Smp38 regulates essential signaling pathways for the establishment of parasite homeostasis, including genes related to antioxidant defense, structural composition of ribosomes, spliceosomes, cytoskeleton, as well as, purine and pyrimidine metabolism pathways. Our data show that the Smp38 MAPK signaling pathway is a critical route for parasite development and may present attractive therapeutic targets for the treatment and control of schistosomiasis.


Assuntos
Schistosoma mansoni/fisiologia , Esquistossomose mansoni/parasitologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Biologia Computacional , Expressão Gênica , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Estágios do Ciclo de Vida , Sistema de Sinalização das MAP Quinases , Camundongos , Oviposição , Estresse Oxidativo , Inibidores de Proteínas Quinases/farmacologia , Schistosoma mansoni/anatomia & histologia , Schistosoma mansoni/efeitos dos fármacos , Esquistossomose mansoni/tratamento farmacológico , Proteínas Quinases p38 Ativadas por Mitógeno/genética
3.
J Signal Transduct ; 2011: 603290, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21776387

RESUMO

Schistosoma mansoni, one of the causative agents of schistosomiasis, has a complex life cycle infecting over 200 million people worldwide. Such a successful and prolific parasite life cycle has been shown to be dependent on the adaptive interaction between the parasite and hosts. Tyrosine kinases (TKs) play a key role in signaling pathways as demonstrated by a large body of experimental work in eukaryotes. Furthermore, comparative genomics have allowed the identification of TK homologs and provided insights into the functional role of TKs in several biological systems. Finally, TK structural biology has provided a rational basis for obtaining selective inhibitors directed to the treatment of human diseases. This paper covers the important aspects of the phospho-tyrosine signaling network in S. mansoni, Caenorhabditis elegans, and humans, the main process of functional diversification of TKs, that is, protein-domain shuffling, and also discusses TKs as targets for the development of new anti-schistosome drugs.

4.
Gene Regul Syst Bio ; 5: 61-74, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22084571

RESUMO

The draft nuclear genome sequence of the snail-transmitted, dimorphic, parasitic, platyhelminth Schistosoma mansoni revealed eight genes encoding proteins that contain the Universal Stress Protein (USP) domain. Schistosoma mansoni is a causative agent of human schistosomiasis, a severe and debilitating Neglected Tropical Disease (NTD) of poverty, which is endemic in at least 76 countries. The availability of the genome sequences of Schistosoma species presents opportunities for bioinformatics and genomics analyses of associated gene families that could be targets for understanding schistosomiasis ecology, intervention, prevention and control. Proteins with the USP domain are known to provide bacteria, archaea, fungi, protists and plants with the ability to respond to diverse environmental stresses. In this research investigation, the functional annotations of the USP genes and predicted nucleotide and protein sequences were initially verified. Subsequently, sequence clusters and distinctive features of the sequences were determined. A total of twelve ligand binding sites were predicted based on alignment to the ATP-binding universal stress protein from Methanocaldococcus jannaschii. In addition, six USP sequences showed the presence of ATP-binding motif residues indicating that they may be regulated by ATP. Public domain gene expression data and RT-PCR assays confirmed that all the S. mansoni USP genes were transcribed in at least one of the developmental life cycle stages of the helminth. Six of these genes were up-regulated in the miracidium, a free-swimming stage that is critical for transmission to the snail intermediate host. It is possible that during the intra-snail stages, S. mansoni gene transcripts for universal stress proteins are low abundant and are induced to perform specialized functions triggered by environmental stressors such as oxidative stress due to hydrogen peroxide that is present in the snail hemocytes. This report serves to catalyze the formation of a network of researchers to understand the function and regulation of the universal stress proteins encoded in genomes of schistosomes and their snail intermediate hosts.

5.
Exp Parasitol ; 116(3): 225-32, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17350619

RESUMO

Protein Tyrosine Kinases (PTKs) are important molecules in intra- and inter-cellular communication, playing a major role in signal transduction processes. We have previously identified and characterized the molecular structure of a new PTK in Schistosoma mansoni, SmFes. SmFes exhibits the characteristic features of Fes/Fps protein tyrosine kinase subfamily of which it is the first member described in helminths. Herein, we show that genes orthologous to SmFes are also present in other Schistosoma species and the transcript is detected in Schistosoma japonicum. The SmFes protein was detected at all the main life-cycle stages and was most abundant in cercariae and newly-transformed schistosomula. However, no protein was detected in schistosomula maintained in vitro for 7 days. By immunolocalization assays we showed that SmFes is particularly concentrated at the terebratorium of miracidia and tegument of cercaria and schistosomula skin-stage. These findings suggest that SmFes may play a role in signal transduction pathways involved in larval transformation after penetration into intermediate and definitive hosts.


Assuntos
Proteínas Proto-Oncogênicas c-fes/fisiologia , Schistosoma mansoni/enzimologia , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Animais , Biomphalaria , Western Blotting , Sequência Conservada , Feminino , Regulação Enzimológica da Expressão Gênica , Interações Hospedeiro-Parasita/fisiologia , Masculino , Camundongos , Modelos Estruturais , Proteínas Proto-Oncogênicas c-fes/biossíntese , Proteínas Proto-Oncogênicas c-fes/química , Proteínas Proto-Oncogênicas c-fes/genética , Schistosoma mansoni/genética , Schistosoma mansoni/fisiologia
6.
Biochem Biophys Res Commun ; 345(3): 1138-48, 2006 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-16713993

RESUMO

Schistosoma mansoni signal transduction pathways are promising sources of target molecules for the development of novel control strategies against this platyhelminth parasite of humans. Members of the protein kinase C (PKC) family play key roles in such pathways activated by both receptor tyrosine kinases and other receptors, controlling a variety of physiological processes. Here, we report the cloning and molecular characterization of the first PKC identified in S. mansoni. Structural analysis indicated that SmPKC1 exhibits all the features typical of the conventional PKC subfamily. The gene structure was determined in silico and found to comprise a total of 15 exons and 14 introns. This structure is highly conserved; all intron positions are also present in the human PKCbeta gene and most of the exon sizes are identical. Using PCR on genomic DNA we were able to show that putative orthologues of SmPKC1 are present in 9 Schistosoma species. SmPKC1 expression is developmentally regulated with the highest level of transcripts in miracidia, whereas SmPKC1 protein expression is higher in the sporocyst. The localization of SmPKC1 on the sporocyst ridge cyton and in schistosomula acetabular glands suggests that the enzyme plays a role in signal transduction pathways associated with larval transformation.


Assuntos
Proteína Quinase C/química , Schistosoma mansoni/metabolismo , Sequência de Aminoácidos , Animais , Clonagem Molecular , Feminino , Masculino , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Proteína Quinase C/fisiologia , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa