Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Mov Disord ; 38(5): 818-830, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36987385

RESUMO

BACKGROUND: The landscape of neurophysiological symptoms and behavioral biomarkers in basal ganglia signals for movement disorders is expanding. The clinical translation of sensing-based deep brain stimulation (DBS) also requires a thorough understanding of the anatomical organization of spectral biomarkers within the subthalamic nucleus (STN). OBJECTIVES: The aims were to systematically investigate the spectral topography, including a wide range of sub-bands in STN local field potentials (LFP) of Parkinson's disease (PD) patients, and to evaluate its predictive performance for clinical response to DBS. METHODS: STN-LFPs were recorded from 70 PD patients (130 hemispheres) awake and at rest using multicontact DBS electrodes. A comprehensive spatial characterization, including hot spot localization and focality estimation, was performed for multiple sub-bands (delta, theta, alpha, low-beta, high-beta, low-gamma, high-gamma, and fast-gamma (FG) as well as low- and fast high-frequency oscillations [HFO]) and compared to the clinical hot spot for rigidity response to DBS. A spectral biomarker map was established and used to predict the clinical response to DBS. RESULTS: The STN shows a heterogeneous topographic distribution of different spectral biomarkers, with the strongest segregation in the inferior-superior axis. Relative to the superiorly localized beta hot spot, HFOs (FG, slow HFO) were localized up to 2 mm more inferiorly. Beta oscillations are spatially more spread compared to other sub-bands. Both the spatial proximity of contacts to the beta hot spot and the distance to higher-frequency hot spots were predictive for the best rigidity response to DBS. CONCLUSIONS: The spatial segregation and properties of spectral biomarkers within the DBS target structure can additionally be informative for the implementation of next-generation sensing-based DBS. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Gânglios da Base , Doença de Parkinson/terapia , Eletrodos
2.
Neuromodulation ; 26(8): 1661-1667, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34328685

RESUMO

OBJECTIVES: To evaluate the correlation between the pallidal local field potentials (LFPs) activity and the cortical oscillations (at rest and during several motor tasks) in two freely moving patients with generalized dystonia and pallidal deep brain stimulation (DBS). MATERIALS AND METHODS: Two women with isolated generalized dystonia were selected for bilateral globus pallidus internus (GPi) DBS. After the electrodes' implantation, cortical activity was recorded by a portable electroencephalography (EEG) system simultaneously with GPi LFPs activity, during several motor tasks, gait, and rest condition. Recordings were not performed during stimulation. EEG and LFPs signals relative to each specific movement were coupled together and grouped in neck/upper limbs movements and gait. Power spectral density (PSD), EEG-LFP coherence (through envelope of imaginary coherence operator), and 1/f exponent of LFP-PSD background were calculated. RESULTS: In both patients, the pallidal LFPs PSD at rest was characterized by prominent 4-12 Hz activity. Voluntary movements increased activity in the theta (θ) band (4-7 Hz) compared to rest, in both LFPs and EEG signals. Gait induced a drastic raise of θ activity in both patients' pallidal activity, less marked for the EEG signal. A coherence peak within the 8-13 Hz range was found between pallidal LFPs and EEG recorded at rest. CONCLUSIONS: Neck/upper limbs voluntary movements and gait suppressed the GPi-LFPs-cortical-EEG coherence and differently impacted both EEG and LFPs low frequency activity. These findings suggest a selective modulation of the cortico-basal ganglia network activity in dystonia.


Assuntos
Estimulação Encefálica Profunda , Distonia , Distúrbios Distônicos , Humanos , Feminino , Distonia/terapia , Globo Pálido , Distúrbios Distônicos/terapia , Eletroencefalografia
3.
Cereb Cortex ; 31(11): 5042-5055, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34165137

RESUMO

As our understanding of volitional motor function increases, it is clear that complex movements are the result of the interactions of multiple cortical regions rather than just the output properties of primary motor cortex. However, our understanding of the interactions among these regions is limited. In this study, we used the activity-dependent stimulation (ADS) technique to determine the short/long-term effects on network activity and neuroplasticity of intracortical connections. ADS uses the intrinsic neural activity of one region to trigger stimulations in a separate region of the brain and can manipulate neuronal connectivity in vivo. Our aim was to compare single-unit neuronal activity within premotor cortex (rostral forelimb area, [RFA] in rats) in response to ADS (triggered from RFA) and randomly-generated stimulation in the somatosensory area (S1) within single sessions and across 21 consecutive days of stimulation. We examined firing rate and correlation between spikes and stimuli in chronically-implanted healthy ambulatory rats during spontaneous and evoked activity. At the end of the treatment, we evaluated changes of synaptophysin expression. Our results demonstrated the ability of ADS to modulate RFA firing properties and to promote synaptogenesis in S1, strengthening the idea that this Hebbian-inspired protocol can be used to modulate cortical connectivity.


Assuntos
Córtex Motor , Animais , Estimulação Elétrica/métodos , Membro Anterior/fisiologia , Córtex Motor/fisiologia , Plasticidade Neuronal , Neurônios/fisiologia , Ratos
4.
Cereb Cortex ; 30(5): 2879-2896, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31832642

RESUMO

Intracortical microstimulation can be used successfully to modulate neuronal activity. Activity-dependent stimulation (ADS), in which action potentials recorded extracellularly from a single neuron are used to trigger stimulation at another cortical location (closed-loop), is an effective treatment for behavioral recovery after brain lesion, but the related neurophysiological changes are still not clear. Here, we investigated the ability of ADS and random stimulation (RS) to alter firing patterns of distant cortical locations. We recorded 591 neuronal units from 23 Long-Evan healthy anesthetized rats. Stimulation was delivered to either forelimb or barrel field somatosensory cortex, using either RS or ADS triggered from spikes recorded in the rostral forelimb area (RFA). Both RS and ADS stimulation protocols rapidly altered spike firing within RFA compared with no stimulation. We observed increase in firing rates and change of spike patterns. ADS was more effective than RS in increasing evoked spikes during the stimulation periods, by producing a reliable, progressive increase in stimulus-related activity over time and an increased coupling of the trigger channel with the network. These results are critical for understanding the efficacy of closed-loop electrical microstimulation protocols in altering activity patterns in interconnected brain networks, thus modulating cortical state and functional connectivity.


Assuntos
Potenciais de Ação/fisiologia , Córtex Motor/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Animais , Estimulação Elétrica/métodos , Membro Anterior/inervação , Membro Anterior/fisiologia , Masculino , Microeletrodos , Ratos , Ratos Long-Evans
5.
Brain Commun ; 6(3): fcae201, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38894949

RESUMO

The role of brain asymmetries of dopaminergic neurons in motor symptoms of Parkinson's disease is still undefined. Local field recordings from the subthalamic nucleus revealed some neurophysiological biomarkers of the disease: increased beta activity, increased low-frequency activity and high-frequency oscillations. Phase-amplitude coupling coordinates the timing of neuronal activity and allows determining the mechanism for communication within distinct regions of the brain. In this study, we discuss the use of phase-amplitude coupling to assess the differences between the two hemispheres in a cohort of 24 patients with Parkinson's disease before and after levodopa administration. Subthalamic low- (12-20 Hz) and high-beta (20-30 Hz) oscillations were compared with low- (30-45 Hz), medium- (70-100 Hz) and high-frequency (260-360 Hz) bands. We found a significant beta-phase-amplitude coupling asymmetry between left and right and an opposite-side-dependent effect of the pharmacological treatment, which is associated with the reduction of motor symptoms. In particular, high coupling between high frequencies and high-beta oscillations was found during the OFF condition (P < 0.01) and a low coupling during the ON state (P < 0.0001) when the right subthalamus was assessed; exactly the opposite happened when the left subthalamus was considered in the analysis, showing a lower coupling between high frequencies and high-beta oscillations during the OFF condition (P < 0.01), followed by a higher one during the ON state (P < 0.01). Interestingly, these asymmetries are independent of the motor onset side, either left or right. These findings have important implications for neural signals that may be used to trigger adaptive deep brain stimulation in Parkinson's and could provide more exhaustive insights into subthalamic dynamics.

6.
J Neural Eng ; 20(5)2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37746822

RESUMO

Brain-related neuronal recordings, such as local field potential, electroencephalogram and magnetoencephalogram, offer the opportunity to study the complexity of the human brain at different spatial and temporal scales. The complex properties of neuronal signals are intrinsically related to the concept of 'scale-free' behavior and irregular dynamic, which cannot be fully described through standard linear methods, but can be measured by nonlinear indexes. A remarkable application of these analysis methods on electrophysiological recordings is the deep comprehension of the pathophysiology of neurodegenerative diseases, that has been shown to be associated to changes in brain activity complexity. In particular, a decrease of global complexity has been associated to Alzheimer's disease, while a local increase of brain signals complexity characterizes Parkinson's disease. Despite the recent proliferation of studies using fractal and entropy-based analysis, the application of these techniques is still far from clinical practice, due to the lack of an agreement about their correct estimation and a conclusive and shared interpretation. Along with the aim of helping towards the realization of a multidisciplinary audience to approach nonlinear methods based on the concepts of fractality and irregularity, this survey describes the implementation and proper employment of the mostly known and applied indexes in the context of Alzheimer's and Parkinson's diseases.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Humanos , Entropia , Fractais , Encéfalo
7.
Clin Neurophysiol ; 152: 43-56, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37285747

RESUMO

OBJECTIVE: Subthalamic nucleus (STN) beta activity (13-30 Hz) is the most accepted biomarker for adaptive deep brain stimulation (aDBS) for Parkinson's disease (PD). We hypothesize that different frequencies within the beta range may exhibit distinct temporal dynamics and, as a consequence, different relationships to motor slowing and adaptive stimulation patterns. We aim to highlight the need for an objective method to determine the aDBS feedback signal. METHODS: STN LFPs were recorded in 15 PD patients at rest and while performing a cued motor task. The impact of beta bursts on motor performance was assessed for different beta candidate frequencies: the individual frequency strongest associated with motor slowing, the individual beta peak frequency, the frequency most modulated by movement execution, as well as the entire-, low- and high beta band. How these candidate frequencies differed in their bursting dynamics and theoretical aDBS stimulation patterns was further investigated. RESULTS: The individual motor slowing frequency often differs from the individual beta peak or beta-related movement-modulation frequency. Minimal deviations from a selected target frequency as feedback signal for aDBS leads to a substantial drop in the burst overlapping and in the alignment of the theoretical onset of stimulation triggers (to âˆ¼ 75% for 1 Hz, to âˆ¼ 40% for 3 Hz deviation). CONCLUSIONS: Clinical-temporal dynamics within the beta frequency range are highly diverse and deviating from a reference biomarker frequency can result in altered adaptive stimulation patterns. SIGNIFICANCE: A clinical-neurophysiological interrogation could be helpful to determine the patient-specific feedback signal for aDBS.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Estimulação Encefálica Profunda/métodos , Doença de Parkinson/diagnóstico , Doença de Parkinson/terapia , Movimento/fisiologia , Sinais (Psicologia)
8.
NPJ Parkinsons Dis ; 8(1): 131, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241667

RESUMO

Brain states in health and disease are classically defined by the power or the spontaneous amplitude modulation (AM) of neuronal oscillations in specific frequency bands. Conversely, the possible role of the spontaneous frequency modulation (FM) in defining pathophysiological brain states remains unclear. As a paradigmatic example of pathophysiological resting states, here we assessed the spontaneous AM and FM dynamics of subthalamic beta oscillations recorded in patients with Parkinson's disease before and after levodopa administration. Even though AM and FM are mathematically independent, they displayed negatively correlated dynamics. First, AM decreased while FM increased with levodopa. Second, instantaneous amplitude and instantaneous frequency were negatively cross-correlated within dopaminergic states, with FM following AM by approximately one beta cycle. Third, AM and FM changes were also negatively correlated between dopaminergic states. Both the slow component of the FM and the fast component (i.e. the phase slips) increased after levodopa, but they differently contributed to the AM-FM correlations within and between states. Finally, AM and FM provided information about whether the patients were OFF vs. ON levodopa, with partial redundancy and with FM being more informative than AM. AM and FM of spontaneous beta oscillations can thus both separately and jointly encode the dopaminergic state in patients with Parkinson's disease. These results suggest that resting brain states are defined not only by AM dynamics but also, and possibly more prominently, by FM dynamics of neuronal oscillations.

9.
Clin Neurophysiol ; 133: 29-38, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34794045

RESUMO

OBJECTIVES: To evaluate spectra and their correlations with clinical symptoms of local field potentials (LFP) acquired from wide- and close-spaced contacts (i.e. between contacts 0-3 or LFP03, and contacts 1-2 or LFP12 respectively) on the same DBS electrode within the subthalamus (STN) in Parkinson's disease (PD), before and after levodopa administration. METHODS: LFP12 and LFP03 were recorded from 20 PD patients. We evaluated oscillatory power, local and switched phase-amplitude coupling (l- and Sw-PAC) and correlation with motor symptoms (UPDRSIII). RESULTS: Before levodopa, both LFP03 and LFP12 power in the α band inversely correlated with UPDRSIII. Differences between contacts were found in the low-frequency bands power. After levodopa, differences in UPDRSIII were associated to changes in LFP03 low-ß and LFP12 HFO (high frequency oscillations, 250-350 Hz) power, while a modulation of the low-ß power and an increased ß-LFO (low frequency oscillations, 15-45 Hz) PAC was found only for LFP12. CONCLUSION: This study reveals differences in spectral pattern between LFP12 and LFP03 before and after levodopa administration, as well as different correlations with PD motor symptoms. SIGNIFICANCE: Differences between LFP12 and LFP03 may offer an opportunity for optimizing adaptive deep brain stimulation (aDBS) protocols for PD. LFP12 can be used to detect ß-HFO coupling and ß power (i.e. bradykinesia), while LFP03 are optimal for low frequency oscillations (dyskinesias).


Assuntos
Potenciais da Membrana/fisiologia , Doença de Parkinson/fisiopatologia , Núcleo Subtalâmico/fisiopatologia , Adulto , Idoso , Antiparkinsonianos/farmacologia , Antiparkinsonianos/uso terapêutico , Estimulação Encefálica Profunda , Eletrodos Implantados , Feminino , Humanos , Levodopa/farmacologia , Levodopa/uso terapêutico , Masculino , Potenciais da Membrana/efeitos dos fármacos , Pessoa de Meia-Idade , Doença de Parkinson/tratamento farmacológico , Núcleo Subtalâmico/efeitos dos fármacos
10.
Artigo em Inglês | MEDLINE | ID: mdl-35604961

RESUMO

Activity dependent stimulation (ADS) is a closed loop stimulation technique whose neurophysiological effects have not been deeply investigated. Here we explored how Local field Potentials (LFP) are impacted by a focal ischemic lesion and, subsequently, by ADS treatment. Intracortical microelectrode arrays were implanted in the rostral forelimb area (RFA) and in the primary somatosensory area (S1) of anaesthetized rats. An ischemic injury was induced in the caudal forelimb area through microinjections of Endothelin-1. The lesion induced an acute depressive trend in LFP power in RFA (evaluated in 6 bands of interest: Delta (1-4Hz), Theta (4-8Hz), Alpha (8-11Hz), Beta (11-30Hz), LowGamma (30-55Hz) and HighGamma (55-80)) followed by a noticeable significant rebound in both areas. Applying ADS induced an overall decrease of power. The lesion impacted the connectivity in a frequency specific manner, resulting in widespread increase in connectivity in Delta both between and within areas. Two hours after the lesion, without stimulation, correlated activity between areas increased in Beta and Gamma. After stimulation, inter-area connectivity increased in Delta, Theta and Alpha, while considerably dropping within RFA in highGamma. By computing phase-amplitude coupling, we found that the lesion produced an incremental increase in the coupling between (Theta) Alpha phase and (lowGamma) highGamma amplitude within RFA, while S1 had a more generalized increase. Likewise, coupling between Theta phase and lowGamma/highGamma amplitudes increased between areas after lesion. ADS induced a similar increase, but greater in magnitude both within and between RFA and S1. These results have important implications on the emerging field of closed-loop adaptive stimulation promoting ADS as an innovative tool for the treatment of neurological disorders.


Assuntos
Encéfalo , Membro Anterior , Animais , Membro Anterior/fisiologia , Humanos , Microeletrodos , Ratos
11.
Bioelectron Med ; 8(1): 4, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35220964

RESUMO

BACKGROUND: Acquired brain injuries, such as stroke, are a major cause of long-term disability worldwide. Intracortical microstimulation (ICMS) can be used successfully to assist in guiding appropriate connections to restore lost sensorimotor integration. Activity-Dependent Stimulation (ADS) is a specific type of closed-loop ICMS that aims at coupling the activity of two different brain regions by stimulating one in response to activity in the other. Recently, ADS was used to effectively promote behavioral recovery in rodent models following a unilateral traumatic brain injury in the primary motor cortex. While behavioral benefits have been described, the neurophysiological changes in spared areas in response to this type of stimulation have not been fully characterized. Here we explored how single-unit spiking activity is impacted by a focal ischemic lesion and, subsequently, by an ADS treatment. METHODS: Intracortical microelectrode arrays were implanted in the ipsilesional rostral forelimb area (RFA) to record spike activity and to trigger intracortical microstimulation in the primary somatosensory area (S1) of anaesthetized Long Evans rats. An ischemic injury was induced in the caudal forelimb area through microinjections of Endothelin-1. Activity from both RFA and S1 was recorded and analyzed off-line by evaluating possible changes, either induced by the lesion in the Control group or by stimulation in the ADS group. RESULTS: We found that the ischemic lesion in the motor area led to an overall increase in spike activity within RFA and a decrease in S1 with respect to the baseline condition. Subsequent treatment with ADS increased the firing rate in both RFA and S1. Post-stimulation spiking activity was significantly higher compared to pre-stimulation activity in the ADS animals versus non-stimulated controls. Moreover, stimulation promoted the generation of highly synchronized bursting patterns in both RFA and S1 only in the ADS group. CONCLUSIONS: This study describes the impact on single-unit activity in ipsilesional areas immediately following a cortical infarct and demonstrates that application of ADS is effective in altering this activity.

12.
Brain Sci ; 12(11)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36421904

RESUMO

Neuroprostheses are neuroengineering devices that have an interface with the nervous system and supplement or substitute functionality in people with disabilities. In the collective imagination, neuroprostheses are mostly used to restore sensory or motor capabilities, but in recent years, new devices directly acting at the brain level have been proposed. In order to design the next-generation of neuroprosthetic devices for brain repair, we foresee the increasing exploitation of closed-loop systems enabled with neuromorphic elements due to their intrinsic energy efficiency, their capability to perform real-time data processing, and of mimicking neurobiological computation for an improved synergy between the technological and biological counterparts. In this manuscript, after providing definitions of key concepts, we reviewed the first exploitation of a real-time hardware neuromorphic prosthesis to restore the bidirectional communication between two neuronal populations in vitro. Starting from that 'case-study', we provide perspectives on the technological improvements for real-time interfacing and processing of neural signals and their potential usage for novel in vitro and in vivo experimental designs. The development of innovative neuroprosthetics for translational purposes is also presented and discussed. In our understanding, the pursuit of neuromorphic-based closed-loop neuroprostheses may spur the development of novel powerful technologies, such as 'brain-prostheses', capable of rewiring and/or substituting the injured nervous system.

13.
Brain Inform ; 8(1): 14, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34283328

RESUMO

Neuronal signals generally represent activation of the neuronal networks and give insights into brain functionalities. They are considered as fingerprints of actions and their processing across different structures of the brain. These recordings generate a large volume of data that are susceptible to noise and artifacts. Therefore, the review of these data to ensure high quality by automatically detecting and removing the artifacts is imperative. Toward this aim, this work proposes a custom-developed automatic artifact removal toolbox named, SANTIA (SigMate Advanced: a Novel Tool for Identification of Artifacts in Neuronal Signals). Developed in Matlab, SANTIA is an open-source toolbox that applies neural network-based machine learning techniques to label and train models to detect artifacts from the invasive neuronal signals known as local field potentials.

14.
Healthcare (Basel) ; 9(5)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925257

RESUMO

The COVID-19 pandemic has forced governments to impose quarantines and lockdowns as containment strategy, raising concerns about mental health and low level of physical activity performed by quarantined populations. In this study, we assess the level of physical activity and psychological wellbeing in a sample of the Italian population during lockdown through an online format of International Physical Activity Questionnaire (IPAQ) and Psychological General Well-Being index-Short version (PGWB-S) . Of 317 adult responders considered, most were female (61.2%), young adults (52.4%), living in little-to-medium size cities (80.1%) and with high-level education (62.8%). Most of our sample performed physical activity mostly during leisure time and domestic activities, and 60.9% were highly active. No interactions were found between physical activity and the demographic characteristics considered. Subjects performing high level of physical activity felt more energetic and vital than those with moderate (p < 0.0001) and low levels (p < 0.0001) of physical activity. Our participants performed enough activity to satisfy the WHO Guidelines, mainly due to domestic activity and activity performed during leisure time, with an overall moderately positive psychological reaction to lockdown.

15.
Front Psychiatry ; 11: 559266, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240119

RESUMO

The first outbreak of COVID-19 in Italy was confirmed on February 21, 2020. Subsequently, COVID-19 turned into a global pandemic, causing a global health emergency, triggering an unprecedented event in the modern era. This study assessed the immediate psychological impact of the COVID-19 epidemic on emotional health and well-being. An ad hoc questionnaire was designed for online completion to expedite data collection during the COVID-19 outbreak. People were invited to participate in the study via social media and email from 4 to 18 March 2020. The entire survey comprised of 21 questions, covering a wide range of factors, such as demographics, disease knowledge, psychological impact, daily life activities, and psychological precautionary measures. The main outcome measure was psychological impact. This was measured based on intensity and prevalence of self-reported feelings of anxiety, fear, sadness, anger, and concern during the epidemic. In total, 10,025 respondents completed the online survey. Of these, about 73% were females, and 100% of the sample possessed good knowledge of the disease. The greatest prevalence of high psychological impact was reported in the <34 years' age group and in north Italy. Additionally, the psychological impact influenced important daily life activities, such as sexuality and nutrition. Our study provides information about the immediate psychological (emotional feelings) responses of Italy's general population to the COVID-19 epidemic. The survey covers several factors that can influence mental health; our results help gauge the psychological burden on the community and offer ways to minimize the impact.

16.
Adv Neurobiol ; 22: 351-387, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31073944

RESUMO

One of the main limitations preventing the realization of a successful dialogue between the brain and a putative enabling device is the intricacy of brain signals. In this perspective, closed-loop in vitro systems can be used to investigate the interactions between a network of neurons and an external system, such as an interacting environment or an artificial device. In this chapter, we provide an overview of closed-loop in vitro systems, which have been developed for investigating potential neuroprosthetic applications. In particular, we first explore how to modify or set a target dynamical behavior in a network of neurons. We then analyze the behavior of in vitro systems connected to artificial devices, such as robots. Finally, we provide an overview of biological neuronal networks interacting with artificial neuronal networks, a configuration currently offering a promising solution for clinical applications.


Assuntos
Técnicas de Cultura de Células/métodos , Técnicas In Vitro/métodos , Rede Nervosa/citologia , Redes Neurais de Computação , Neurônios/citologia , Robótica/métodos , Encéfalo/citologia , Humanos
17.
iScience ; 19: 402-414, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31421595

RESUMO

Recent advances in bioelectronics and neural engineering allowed the development of brain machine interfaces and neuroprostheses, capable of facilitating or recovering functionality in people with neurological disability. To realize energy-efficient and real-time capable devices, neuromorphic computing systems are envisaged as the core of next-generation systems for brain repair. We demonstrate here a real-time hardware neuromorphic prosthesis to restore bidirectional interactions between two neuronal populations, even when one is damaged or missing. We used in vitro modular cell cultures to mimic the mutual interaction between neuronal assemblies and created a focal lesion to functionally disconnect the two populations. Then, we employed our neuromorphic prosthesis for bidirectional bridging to artificially reconnect two disconnected neuronal modules and for hybrid bidirectional bridging to replace the activity of one module with a real-time hardware neuromorphic Spiking Neural Network. Our neuroprosthetic system opens avenues for the exploitation of neuromorphic-based devices in bioelectrical therapeutics for health care.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa