Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 25(18): 185704, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24736107

RESUMO

The growth of SiOx nanowires (NWs) with intense white emission is reported. Due to carbon monoxide gas being used as a dopant precursor, carbon-doped under-stoichiometric silicon dioxide NWs are obtained. The doping of the NWs is studied by means of x-ray photoelectron spectroscopy, which allows to assess the presence of carbon atoms in the silicon oxide amorphous structure. The light emission properties are studied by means of cathodoluminescence spectroscopy, which shows three main emission bands set at 2.7 eV (blue), 2.3 eV (green) and 1.9 eV (red), resulting in the white emission.

2.
Phys Chem Chem Phys ; 15(31): 12864-81, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23807700

RESUMO

Phthalocyanine (H2Pc) and its open-shell copper complex (CuPc) deposited on amorphous gold films have been studied by combining the outcomes of several synchrotron based spectroscopic tools (X-ray photoelectron spectroscopy, UV photoelectron spectroscopy and near-edge X-ray absorption fine structure, NEXAFS, spectroscopy) with those of density functional theory (DFT) calculations. The assignment of experimental evidence has been guided by the results of DFT numerical experiments carried out on isolated molecules. With specific reference to CuPc NEXAFS data collected at the N K-edge, they have been assigned by using the open-shell time-dependent DFT (TDDFT) in the framework of the zeroth order regular approximation (ZORA) scalar relativistic approach. The agreement between theory and experiment has been found to be satisfactory, thus indicating that the open-shell TDDFT (F. Wang and T. Ziegler, Mol. Phys., 2004, 102, 2585) may be used with some confidence to look into the X-ray absorption spectroscopy results pertinent to transition metal complexes. As far as the metal-ligand interaction is concerned, the combined use of NEXAFS spectroscopy and DFT outcomes ultimately testified the significant ionic contribution characterizing the bonding between the metal centre and the nitrogen atoms of the phthalocyanine coordinative pocket.


Assuntos
Cobre/química , Elétrons , Indóis/química , Compostos Organometálicos/química , Teoria Quântica , Isoindóis
3.
J Chem Phys ; 138(4): 044701, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23387609

RESUMO

In this work, we investigate the processes leading to the room-temperature growth of silicon carbide thin films by supersonic molecular beam epitaxy technique. We present experimental data showing that the collision of fullerene on a silicon surface induces strong chemical-physical perturbations and, for sufficient velocity, disruption of molecular bonds, and cage breaking with formation of nanostructures with different stoichiometric character. We show that in these out-of-equilibrium conditions, it is necessary to go beyond the standard implementations of density functional theory, as ab initio methods based on the Born-Oppenheimer approximation fail to capture the excited-state dynamics. In particular, we analyse the Si-C(60) collision within the non-adiabatic nuclear dynamics framework, where stochastic hops occur between adiabatic surfaces calculated with time-dependent density functional theory. This theoretical description of the C(60) impact on the Si surface is in good agreement with our experimental findings.


Assuntos
Compostos Inorgânicos de Carbono/química , Simulação de Dinâmica Molecular , Teoria Quântica , Compostos de Silício/química , Temperatura
4.
J Am Chem Soc ; 134(42): 17400-3, 2012 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-23057581

RESUMO

Silicon carbide (SiC) has unique chemical, physical, and mechanical properties. A factor strongly limiting SiC-based technologies is the high-temperature synthesis. In this work, we provide unprecedented experimental and theoretical evidence of 3C-SiC epitaxy on silicon at room temperature by using a buckminsterfullerene (C(60)) supersonic beam. Chemical processes, such as C(60) rupture, are activated at a precursor kinetic energy of 30-35 eV, far from thermodynamic equilibrium. This result paves the way for SiC synthesis on polymers or plastics that cannot withstand high temperatures.


Assuntos
Compostos Inorgânicos de Carbono/química , Nanopartículas/química , Compostos de Silício/química , Silício/química , Temperatura , Teoria Quântica
5.
Phys Chem Chem Phys ; 14(16): 5705-10, 2012 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-22426007

RESUMO

Unprecedented room temperature excitonic emissions are achieved from TiO(2) nanocrystals synthesized at 300 K by supersonic cluster beams. Transmission electron microscopy studies show the crystalline nature of the nanoparticles (NPs) with a diameter ranging from 5 to 30 nm. All the samples show mixed rutile and anatase phases as confirmed by Raman spectroscopy. XPS core level analyses evidence an O/Ti ratio of the as-grown nanoparticles of 2.30 ± 0.04. Two room temperature cathodoluminescence excitonic peaks observed at 3.16 and 3.25 eV are ascribed to the coexistence of rutile and anatase crystallographic phases respectively. Subsequent thermal treatments at 450 °C cause the complete quenching of the UV excitonic emissions and result in a more conventional broad visible band centered at 2.5 eV. HRTEM and XPS studies reveal that, after annealing, the NPs remain single crystals in nature with an O/Ti ratio of 2.20 ± 0.04. These results suggest a correlation between the emission properties and the oxygen concentration of our NPs. The achieved ability to tune the optical properties of TiO(2) nanoparticles is very promising for sensing and energy applications.


Assuntos
Nanopartículas/química , Temperatura , Titânio/química , Tamanho da Partícula , Propriedades de Superfície
6.
Nanomaterials (Basel) ; 12(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36500862

RESUMO

Non-covalent π-π and dipolar interactions with small aromatic molecules have been widely demonstrated to be a valid option to tune graphene work functions without adding extrinsic scattering centers for charge carriers. In this work, we investigated the interaction between a CVD-graphene monolayer and a thermally evaporated sub-monolayer and the following few-layer thin films of similar perylene diimide derivatives: PDI8-CN2 and PDIF-CN2. The molecular influence on the graphene work function was estimated by XPS and UPS analysis and by investigating the surface potentials via scanning Kelvin probe force microscopy. The perfluorinated decoration and the steric interaction in the early stages of the film growth determined a positive work function shift as high as 0.7 eV in the case of PDIF-CN2, with respect to the value of 4.41 eV for the intrinsic graphene. Our results unambiguously highlight the absence of valence band shifts in the UPS analysis, indicating the prevalence of dipolar interactions between the graphene surface and the organic species enhanced by the presence of the fluorine-enriched moieties.

7.
Nanomaterials (Basel) ; 12(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35457985

RESUMO

Nitroaromatic explosives are the most common explosives, and their detection is important to public security, human health, and environmental protection. In particular, the detection of solid explosives through directly revealing the presence of their vapors in air would be desirable for compact and portable devices. In this study, amino-functionalized carbon nanotubes were used to produce resistive sensors to detect nitroaromatic explosives by interaction with their vapors. Devices formed by carbon nanotube networks working at room temperature revealed trinitrotoluene, one of the most common nitroaromatic explosives, and di-nitrotoluene-saturated vapors, with reaction and recovery times of a few and tens of seconds, respectively. This type of resistive device is particularly simple and may be easily combined with low-power electronics for preparing portable devices.

8.
Sci Rep ; 11(1): 9380, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931690

RESUMO

In several biomedical applications, the detection of biomarkers demands high sensitivity, selectivity and easy-to-use devices. Organic electrochemical transistors (OECTs) represent a promising class of devices combining a minimal invasiveness and good signal transduction. However, OECTs lack of intrinsic selectivity that should be implemented by specific approaches to make them well suitable for biomedical applications. Here, we report on a biosensor in which selectivity and a high sensitivity are achieved by interfacing, in an OECT architecture, a novel gate electrode based on aptamers, Au nanoparticles and graphene hierarchically organized to optimize the final response. The fabricated biosensor performs state of the art limit of detection monitoring biomolecules, such as thrombin-with a limit of detection in the picomolar range (≤ 5 pM) and a very good selectivity even in presence of supraphysiological concentrations of Bovine Serum Albumin (BSA-1mM). These accomplishments are the final result of the gate hierarchic structure that reduces sterich indrance that could contrast the recognition events and minimizes false positive, because of the low affinity of graphene towards the physiological environment. Since our approach can be easily applied to a large variety of different biomarkers, we envisage a relevant potential for a large series of different biomedical applications.

9.
Nanotechnology ; 21(34): 345702, 2010 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-20683139

RESUMO

We report the influence of the native amorphous SiO(2) shell on the cathodoluminescence emission of 3C-SiC/SiO(2) core/shell nanowires. A shell-induced enhancement of the SiC near-band-edge emission is observed and studied as a function of the silicon dioxide thickness. Since the diameter of the investigated SiC cores rules out any direct bandgap optical transitions due to confinement effects, this enhancement is ascribed to a carrier diffusion from the shell to the core, promoted by the alignment of the SiO(2) and SiC bands in a type I quantum well. An accurate correlation between the optical emission and structural and SiO(2)-SiC interface properties is also reported.

10.
Biophys Chem ; 229: 115-122, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28476206

RESUMO

We report a comprehensive study of the biocompatibility and neurocompatibility of titanium dioxide films (TiO2) prepared by Pulsed Microplasma Cluster Source (PMCS). This technique uses supersonic pulsed beams seeded by clusters of the metal oxide synthesized in a plasma discharge. The final stoichiometry of the TiO2 thin films is tuned changing the gas mixture, achieving stoichiometric or oxygen overstoichiometric films. All the films showed consistent biocompatibility and a spontaneous absorption of poly-d-lysine (PDL) that favors the adhesion and growth of murine cortical neurons. Moreover, the bioelectrical activity of the neuronal culture grown on the TiO2 film can be modulated by changing the chemistry of the surface. This work paves the way to develop a bio-hybrid neuromorphic device, where viable nerve cells are grown directly over a titanium dioxide film showing a network of memristors.


Assuntos
Materiais Biocompatíveis/química , Titânio/química , Potenciais de Ação/efeitos dos fármacos , Adsorção , Animais , Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células HeLa , Humanos , Células MCF-7 , Camundongos , Microscopia de Força Atômica , Neurônios/citologia , Neurônios/metabolismo , Técnicas de Patch-Clamp , Polilisina/química , Polilisina/metabolismo , Propriedades de Superfície
11.
J Anal Methods Chem ; 2016: 9073594, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27073712

RESUMO

Palladium nanoparticles are of great interest in many industrial fields, ranging from catalysis and hydrogen technology to microelectronics, thanks to their unique physical and chemical properties. In this work, palladium clusters have been prepared by reduction of [PdCl4](2-) ions with ethylene glycol, in the presence of poly(N-vinyl-2-pyrrolidone) (PVP) as stabilizer. The stabilizer performs the important role of nucleating agent for the Pd atoms with a fast phase separation, since palladium atoms coordinated to the polymer side-groups are forced at short distances during nucleation. Quasispherical palladium clusters with a diameter of ca. 2.6 nm were obtained by reaction in air at 90°C for 2 hours. An extensive materials characterization by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and other characterizations (TGA, SEM, EDS-SEM, and UV-Vis) has been performed in order to evaluate the structure and oxidation state of nanopalladium.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa