Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
PLoS Comput Biol ; 17(7): e1009231, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34324494

RESUMO

We describe a mathematical model for the aggregation of starved first-stage C elegans larvae (L1s). We propose that starved L1s produce and respond chemotactically to two labile diffusible chemical signals, a short-range attractant and a longer range repellent. This model takes the mathematical form of three coupled partial differential equations, one that describes the movement of the worms and one for each of the chemical signals. Numerical solution of these equations produced a pattern of aggregates that resembled that of worm aggregates observed in experiments. We also describe the identification of a sensory receptor gene, srh-2, whose expression is induced under conditions that promote L1 aggregation. Worms whose srh-2 gene has been knocked out form irregularly shaped aggregates. Our model suggests this phenotype may be explained by the mutant worms slowing their movement more quickly than the wild type.


Assuntos
Comportamento Animal/fisiologia , Caenorhabditis elegans/fisiologia , Modelos Biológicos , Comunicação Animal , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Biologia Computacional , Simulação por Computador , Expressão Gênica , Técnicas de Inativação de Genes , Larva/genética , Larva/fisiologia , Conceitos Matemáticos , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiologia , Comportamento Social , Inanição/fisiopatologia
2.
Genes Dev ; 23(1): 12-7, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19136622

RESUMO

When the supply of environmental nutrients is limited, multicellular animals can make both physiological and behavioral changes so as to cope with nutrient starvation. Although physiological and behavioral effects of starvation are well known, the mechanisms by which animals sense starvation systemically remain elusive. Furthermore, what constituent of food is sensed and how it modulates starvation response is still poorly understood. In this study, we use a starvation-hypersensitive mutant to identify molecules and mechanisms that modulate starvation signaling. We found that specific amino acids could suppress the starvation-induced death of gpb-2 mutants, and that MGL-1 and MGL-2, Caenorhabditis elegans homologs of metabotropic glutamate receptors, were involved. MGL-1 and MGL-2 acted in AIY and AIB neurons, respectively. Treatment with leucine suppressed starvation-induced stress resistance and life span extension in wild-type worms, and mutation of mgl-1 and mgl-2 abolished these effects of leucine. Taken together, our results suggest that metabotropic glutamate receptor homologs in AIY and AIB neuron may modulate a systemic starvation response, and that C. elegans senses specific amino acids as an anti-hunger signal.


Assuntos
Caenorhabditis elegans/fisiologia , Inanição/metabolismo , Estresse Fisiológico/fisiologia , Aminoácidos/farmacologia , Animais , Autofagia/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Subunidades beta da Proteína de Ligação ao GTP/genética , Neurônios/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
3.
J Biol Chem ; 288(26): 18778-83, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23689506

RESUMO

The ascarosides, small-molecule signals derived from combinatorial assembly of primary metabolism-derived building blocks, play a central role in Caenorhabditis elegans biology and regulate many aspects of development and behavior in this model organism as well as in other nematodes. Using HPLC-MS/MS-based targeted metabolomics, we identified novel ascarosides incorporating a side chain derived from succinylation of the neurotransmitter octopamine. These compounds, named osas#2, osas#9, and osas#10, are produced predominantly by L1 larvae, where they serve as part of a dispersal signal, whereas these ascarosides are largely absent from the metabolomes of other life stages. Investigating the biogenesis of these octopamine-derived ascarosides, we found that succinylation represents a previously unrecognized pathway of biogenic amine metabolism. At physiological concentrations, the neurotransmitters serotonin, dopamine, and octopamine are converted to a large extent into the corresponding succinates, in addition to the previously described acetates. Chemically, bimodal deactivation of biogenic amines via acetylation and succinylation parallels posttranslational modification of proteins via acetylation and succinylation of L-lysine. Our results reveal a small-molecule connection between neurotransmitter signaling and interorganismal regulation of behavior and suggest that ascaroside biosynthesis is based in part on co-option of degradative biochemical pathways.


Assuntos
Aminas Biogênicas/metabolismo , Caenorhabditis elegans/metabolismo , Octopamina/química , Agonistas alfa-Adrenérgicos/química , Animais , Comportamento Animal , Cromatografia Líquida de Alta Pressão , Dopamina/metabolismo , Glicosídeos/química , Espectrometria de Massas , Neurotransmissores/metabolismo , Feromônios/metabolismo , Serotonina/metabolismo , Transdução de Sinais , Succinatos/química
4.
Cell Mol Life Sci ; 70(9): 1623-36, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23255046

RESUMO

Nematode sterol-binding protein 1 (NSBP-1) is a homolog of nucleosome assembly protein 1 in mammals that is expressed widely in Caenorhabditis elegans. NSBP-1 mutants are biologically lethal, demonstrating the significance of the gene in growth and development. We investigated how cholesterol influences the insulin signaling pathway through this novel sterol-binding protein in C. elegans. Here we report that NSBP-1 influences many biological processes mediated by insulin signaling, such as longevity, dauer formation, fat storage, and resistance to oxidative stress. We found that NSBP-1 is phosphorylated by AKT-1 downstream of insulin signaling. In the absence of insulin signaling, NSBP-1 is translocated to the nucleus and binds to DAF-16, a FOXO transcription factor, in a cholesterol-dependent manner. Moreover, NSBP-1 and DAF-16 regulate a common set of genes that can directly modulate fat storage, longevity, and resistance to stress. Together, our results present a new steroid-binding molecule that can connect sterol signaling to insulin signaling through direct interaction with FOXO.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Transporte/metabolismo , Colesterol/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Insulina/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/ultraestrutura , Proteínas de Caenorhabditis elegans/análise , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/análise , Proteínas de Transporte/genética , Fatores de Transcrição Forkhead , Expressão Gênica , Ligação Proteica , Transporte Proteico , Transdução de Sinais , Fatores de Transcrição/metabolismo , Ativação Transcricional , Regulação para Cima
5.
J Neurosci ; 32(6): 1920-31, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22323705

RESUMO

Food intake in the nematode Caenorhabditis elegans requires two distinct feeding motions, pharyngeal pumping and isthmus peristalsis. Bacteria, the natural food of C. elegans, activate both feeding motions (Croll, 1978; Horvitz et al., 1982; Chiang et al., 2006). The mechanisms by which bacteria activate the feeding motions are largely unknown. To understand the process, we studied how serotonin, an endogenous pharyngeal pumping activator whose action is triggered by bacteria, activates feeding motions. Here, we show that serotonin, like bacteria, activates overall feeding by activating isthmus peristalsis as well as pharyngeal pumping. During active feeding, the frequencies and the timing of onset of the two motions were distinct, but each isthmus peristalsis was coupled to the preceding pump. We found that serotonin activates the two feeding motions mainly by activating two separate neural pathways in response to bacteria. For activating pumping, the SER-7 serotonin receptor in the MC motor neurons in the feeding organ activated cholinergic transmission from MC to the pharyngeal muscles by activating the Gsα signaling pathway. For activating isthmus peristalsis, SER-7 in the M4 (and possibly M2) motor neuron in the feeding organ activated the G(12)α signaling pathway in a cell-autonomous manner, which presumably activates neurotransmission from M4 to the pharyngeal muscles. Based on our results and previous calcium imaging of pharyngeal muscles (Shimozono et al., 2004), we propose a model that explains how the two feeding motions are separately regulated yet coupled. The feeding organ may have evolved this way to support efficient feeding.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Comportamento Alimentar/fisiologia , Neurônios Motores/fisiologia , Receptores de Serotonina/fisiologia , Serotonina/fisiologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiologia , Ingestão de Alimentos/fisiologia , Técnicas de Silenciamento de Genes , Neurônios Motores/microbiologia , Mutação/fisiologia , Vias Neurais/microbiologia , Vias Neurais/fisiologia , Peristaltismo/fisiologia , Músculos Faríngeos/microbiologia , Músculos Faríngeos/fisiologia
6.
Cell Metab ; 7(3): 249-57, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18316030

RESUMO

Despite the prevalence of obesity and its related diseases, the signaling pathways for appetite control and satiety are not clearly understood. Here we report C. elegans quiescence behavior, a cessation of food intake and movement that is possibly a result of satiety. C. elegans quiescence shares several characteristics of satiety in mammals. It is induced by high-quality food, it requires nutritional signals from the intestine, and it depends on prior feeding history: fasting enhances quiescence after refeeding. During refeeding after fasting, quiescence is evoked, causing gradual inhibition of food intake and movement, mimicking the behavioral sequence of satiety in mammals. Based on these similarities, we propose that quiescence results from satiety. This hypothesized satiety-induced quiescence is regulated by peptide signals such as insulin and TGF-beta. The EGL-4 cGMP-dependent protein kinase functions downstream of insulin and TGF-beta in sensory neurons including ASI to control quiescence in response to food intake.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , GMP Cíclico/metabolismo , Ingestão de Alimentos , Insulina/metabolismo , Locomoção , Resposta de Saciedade , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Animais , Regulação do Apetite , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Jejum/metabolismo , Canais Iônicos/metabolismo , Modelos Animais , Mutação , Neurônios/metabolismo , Receptor de Insulina/metabolismo
7.
Proc Natl Acad Sci U S A ; 106(47): 20093-6, 2009 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-19903886

RESUMO

Caenorhabditis elegans is a filter feeder: it draws bacteria suspended in liquid into its pharynx, traps the bacteria, and ejects the liquid. How pharyngeal pumping simultaneously transports and filters food particles has been poorly understood. Here, we use high-speed video microscopy to define the detailed workings of pharyngeal mechanics. The buccal cavity and metastomal flaps regulate the flow of dense bacterial suspensions and exclude excessively large particles from entering the pharynx. A complex sequence of contractions and relaxations transports food particles in two successive trap stages before passage into the terminal bulb and intestine. Filtering occurs at each trap as bacteria are concentrated in the central lumen while fluids are expelled radially through three apical channels. Experiments with microspheres show that the C. elegans pharynx, in combination with the buccal cavity, is tuned to specifically catch and transport particles of a size range corresponding to most soil bacteria.


Assuntos
Bactérias/ultraestrutura , Caenorhabditis elegans , Comportamento Alimentar , Animais , Caenorhabditis elegans/anatomia & histologia , Caenorhabditis elegans/fisiologia , Filtração , Microscopia de Vídeo , Contração Muscular/fisiologia , Tamanho da Partícula , Faringe/anatomia & histologia , Faringe/fisiologia
8.
Cell Metab ; 3(4): 237-45, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16581001

RESUMO

Starvation activates MAPK in the pharyngeal muscles of C. elegans through a muscarinic acetylcholine receptor, Gqalpha, and nPKC as shown by the following results: (1) Starvation causes phosphorylation of MAPK in pharyngeal muscle. (2) In a sensitized genetic background in which Gqalpha signaling cannot be downregulated, activation of the pathway by a muscarinic agonist causes lethal changes in pharyngeal muscle function. Starvation has identical effects. (3) A muscarinic antagonist blocks the effects of starvation on sensitized muscle. (4) Mutations and drugs that block any step of signaling from the muscarinic receptor to MAPK also block the effects of starvation on sensitized muscle. (5) Overexpression of MAPK in wild-type pharyngeal muscle mimics the effects of muscarinic agonist and of starvation on sensitized muscle. We suggest that, during starvation, the muscarinic pathway to MAPK is activated to change the pharyngeal muscle physiology to enhance ingestion of food when food becomes available.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Receptores Muscarínicos/fisiologia , Acetilcolina/fisiologia , Animais , Arecolina/farmacologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/genética , Agonistas Colinérgicos/farmacologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Comportamento Alimentar , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/fisiologia , Regulação Enzimológica da Expressão Gênica , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Agonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/farmacologia , Mutação , Faringe/efeitos dos fármacos , Faringe/enzimologia , Fenótipo , Proteína Quinase C/fisiologia , Receptores Muscarínicos/efeitos dos fármacos , Inanição
9.
BMC Biol ; 8: 69, 2010 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-20504291

RESUMO

Thousands of behavioral mutants of Caenorhabditis elegans have been studied. I suggest a set of criteria by which some genes important in the evolution of behavior might be recognized, and identify neuropeptide signaling pathways as candidates.


Assuntos
Comportamento Animal/fisiologia , Evolução Biológica , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Genética Comportamental/métodos , Neuropeptídeos/metabolismo , Transdução de Sinais/fisiologia , Animais , Transdução de Sinais/genética
10.
Mol Cells ; 44(7): 529-537, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34140426

RESUMO

Most animals face frequent periods of starvation throughout their entire life and thus need to appropriately adjust their behavior and metabolism during starvation for their survival. Such adaptive responses are regulated by a complex set of systemic signals, including hormones and neuropeptides. While much progress has been made in identifying pathways that regulate nutrient-excessive states, it is still incompletely understood how animals systemically signal their nutrient-deficient states. Here, we showed that the FMRFamide neuropeptide FLP-20 modulates a systemic starvation response in Caenorhabditis elegans. We found that mutation of flp-20 rescued the starvation hypersensitivity of the G protein ß-subunit gpb-2 mutants by suppressing excessive autophagy. FLP-20 acted in AIB neurons, where the metabotropic glutamate receptor MGL-2 also functions to modulate a systemic starvation response. Furthermore, FLP-20 modulated starvation-induced fat degradation in a manner dependent on the receptor-type guanylate cyclase GCY-28. Collectively, our results reveal a circuit that senses and signals nutrient-deficient states to modulate a systemic starvation response in multicellular organisms.


Assuntos
FMRFamida/metabolismo , Neuropeptídeos/genética , Animais , Caenorhabditis elegans
11.
Dev Cell ; 4(1): 131-42, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12530969

RESUMO

To gain insights into the genetic cascades that regulate fat biology, we evaluated C. elegans as an appropriate model organism. We generated worms that lack two transcription factors, SREBP and C/EBP, crucial for formation of mammalian fat. Worms deficient in either of these genes displayed a lipid-depleted phenotype-pale, skinny, larval-arrested worms that lack fat stores. On the basis of this phenotype, we used a reverse genetic screen to identify several additional genes that play a role in worm lipid storage. Two of the genes encode components of the mitochondrial respiratory chain (MRC). When the MRC was inhibited chemically in worms or in a mammalian adipocyte model, fat accumulation was markedly reduced. A third encodes lpd-3, whose homolog is also required for fat storage in a mammalian model. These data suggest that C. elegans is a genetically tractable model to study the mechanisms that underlie the biology of fat-storing tissues.


Assuntos
Tecido Adiposo/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Metabolismo dos Lipídeos , Modelos Animais , Fatores de Transcrição , Células 3T3 , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ingestão de Alimentos , Transporte de Elétrons/genética , Regulação da Expressão Gênica , Genes de Helmintos/genética , Humanos , Mucosa Intestinal/metabolismo , Larva/genética , Larva/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Camundongos , Mitocôndrias/metabolismo , Mutação , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Inanição/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1
12.
Genetics ; 180(3): 1475-91, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18832350

RESUMO

The regulation of chemoreceptor (CR) gene expression by environmental signals and internal cues may contribute to the modulation of multiple physiological processes and behavior in Caenorhabditis elegans. We previously showed that KIN-29, a homolog of salt-inducible kinase, acts in sensory neurons to regulate the expression of a subset of CR genes, as well as sensory behaviors. Here we show that the cGMP-dependent protein kinase EGL-4 acts partly in parallel with KIN-29 to regulate CR gene expression. Sensory inputs inhibit both EGL-4 and KIN-29 functions, and KIN-29 function is inhibited in turn by cAMP-dependent protein kinase (PKA) activation. EGL-4 and KIN-29 regulate CR gene expression by antagonizing the gene repression functions of the class II HDAC HDA-4 and the MEF-2 transcription factor, and KIN-29, EGL-4, and PKA target distinct residues in HDA-4 to regulate its function and subcellular localization. While KIN-29 acts primarily via MEF-2/HDA-4 to regulate additional sensory signal-regulated physiological processes and behaviors, EGL-4 acts via both MEF-2-dependent and -independent pathways. Our results suggest that integration of complex sensory inputs via multiple signaling pathways allows animals to precisely regulate sensory gene expression, thereby appropriately modulating physiology and behavior.


Assuntos
Comportamento Animal/fisiologia , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Proteínas Quinases Dependentes de GMP Cíclico/fisiologia , Regulação da Expressão Gênica , Proteínas Serina-Treonina Quinases/fisiologia , Células Receptoras Sensoriais/fisiologia , Animais , Animais Geneticamente Modificados , Comportamento Animal/efeitos dos fármacos , Tamanho Corporal , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células Quimiorreceptoras/fisiologia , Diacetil/farmacologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Mutação/genética , Pentanonas/farmacologia , Fosforilação , Células Receptoras Sensoriais/efeitos dos fármacos , Fatores de Transcrição/fisiologia
13.
J R Soc Interface ; 16(157): 20190174, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31455164

RESUMO

A quantitative understanding of organism-level behaviour requires predictive models that can capture the richness of behavioural phenotypes, yet are simple enough to connect with underlying mechanistic processes. Here, we investigate the motile behaviour of nematodes at the level of their translational motion on surfaces driven by undulatory propulsion. We broadly sample the nematode behavioural repertoire by measuring motile trajectories of the canonical laboratory strain Caenorhabditis elegans N2 as well as wild strains and distant species. We focus on trajectory dynamics over time scales spanning the transition from ballistic (straight) to diffusive (random) movement and find that salient features of the motility statistics are captured by a random walk model with independent dynamics in the speed, bearing and reversal events. We show that the model parameters vary among species in a correlated, low-dimensional manner suggestive of a common mode of behavioural control and a trade-off between exploration and exploitation. The distribution of phenotypes along this primary mode of variation reveals that not only the mean but also the variance varies considerably across strains, suggesting that these nematode lineages employ contrasting 'bet-hedging' strategies for foraging.


Assuntos
Comportamento Exploratório/fisiologia , Modelos Biológicos , Nematoides/fisiologia , Animais , Simulação por Computador , Atividade Motora , Nematoides/genética , Filogenia , Especificidade da Espécie
14.
Genetics ; 164(1): 153-62, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12750328

RESUMO

Mechanical stimulation induces opposite behavioral responses in the adult and dauer pharynx. Tail tap of adults inhibits pharyngeal pumping via a pathway involving the innexin gene unc-7 and components of the glutamatergic pathway encoded by the genes avr-14 and avr-15. Tail tap of dauers stimulates pumping through a mechanism involving G alpha o and G alpha q. The nematocidal drug ivermectin is believed to kill worms by opening a glutamate-gated chloride channel (AVR-15) on pharyngeal muscle, causing complete pumping inhibition. However, ivermectin can also inhibit pumping in the absence of this channel. We propose that one of the ways ivermectin could prevent pumping, in the absence of the AVR-15 ivermectin-binding channel on pharynx muscle, is to target AVR-14 and AVR-15, which are expressed in the inhibitory pathway linking mechanosensation and pumping activity.


Assuntos
Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica , Ivermectina/metabolismo , Faringe/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Comportamento Alimentar , Subunidades alfa de Proteínas de Ligação ao GTP , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Proteínas de Membrana/metabolismo , Neurotransmissores/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
15.
Genetics ; 167(2): 633-43, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15238517

RESUMO

Muscarinic acetylcholine receptors regulate the activity of neurons and muscle cells through G-protein-coupled cascades. Here, we identify a pathway through which the GAR-3 muscarinic receptor regulates both membrane potential and excitation-contraction coupling in the Caenorhabditis elegans pharyngeal muscle. GAR-3 signaling is enhanced in worms overexpressing gar-3 or lacking GPB-2, a G-protein beta-subunit involved in RGS-mediated inhibition of G(o)alpha- and G(q)alpha-linked pathways. High levels of signaling through GAR-3 inhibit pharyngeal muscle relaxation and impair feeding--but do not block muscle repolarization--when worms are exposed to arecoline, a muscarinic agonist. Loss of gar-3 function results in shortened action potentials and brief muscle contractions in the pharyngeal terminal bulb. High levels of calcium entry through voltage-gated channels also impair terminal bulb relaxation and sensitize worms to the toxic effects of arecoline. Mutation of gar-3 reverses this sensitivity, suggesting that GAR-3 regulates calcium influx or calcium-dependent processes. Because the effects of GAR-3 signaling on membrane depolarization and muscle contraction can be separated, we conclude that GAR-3 regulates multiple calcium-dependent processes in the C. elegans pharyngeal muscle.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Sinalização do Cálcio/fisiologia , Contração Muscular/fisiologia , Receptores Muscarínicos/genética , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Proteínas de Caenorhabditis elegans/fisiologia , Éxons/genética , Proteínas de Fluorescência Verde/genética , Íntrons/genética , Dados de Sequência Molecular , Neurônios/fisiologia , Faringe/inervação , Mutação Puntual , Receptores Muscarínicos/fisiologia , Deleção de Sequência , Homologia de Sequência de Aminoácidos
16.
Genetics ; 166(1): 161-9, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15020415

RESUMO

Mutations in eat-2 and eat-18 cause the same defect in C. elegans feeding behavior: the pharynx is unable to pump rapidly in the presence of food. EAT-2 is a nicotinic acetylcholine receptor subunit that functions in the pharyngeal muscle. It is localized to the synapse between pharyngeal muscle and the main pharyngeal excitatory motor neuron MC, and it is required for MC stimulation of pharyngeal muscle. eat-18 encodes a small protein that has no homology to previously characterized proteins. It has a single transmembrane domain and a short extracellular region. Allele-specific genetic interactions between eat-2 and eat-18 suggest that EAT-18 interacts physically with the EAT-2 receptor. While eat-2 appears to be required specifically for MC neurotransmission, eat-18 also appears to be required for the function of other nicotinic receptors in the pharynx. In eat-18 mutants, the gross localization of EAT-2 at the MC synapse is normal, suggesting that it is not required for trafficking. These data indicate that eat-18 could be a novel component of the pharyngeal nicotinic receptor.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Receptores Nicotínicos/genética , Receptores Nicotínicos/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Bungarotoxinas/metabolismo , Clonagem Molecular , DNA Complementar/genética , DNA de Helmintos/genética , Genes de Helmintos , Dados de Sequência Molecular , Neurônios Motores/fisiologia , Mutação , Músculos Faríngeos/inervação , Músculos Faríngeos/fisiologia , Faringe/inervação , Faringe/fisiologia , Transmissão Sináptica
17.
Elife ; 42015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25898004

RESUMO

Neuropeptides are essential for the regulation of appetite. Here we show that neuropeptides could regulate feeding in mutants that lack neurotransmission from the motor neurons that stimulate feeding muscles. We identified nlp-24 by an RNAi screen of 115 neuropeptide genes, testing whether they affected growth. NLP-24 peptides have a conserved YGGXX sequence, similar to mammalian opioid neuropeptides. In addition, morphine and naloxone respectively stimulated and inhibited feeding in starved worms, but not in worms lacking NPR-17, which encodes a protein with sequence similarity to opioid receptors. Opioid agonists activated heterologously expressed NPR-17, as did at least one NLP-24 peptide. Worms lacking the ASI neurons, which express npr-17, did not response to naloxone. Thus, we suggest that Caenorhabditis elegans has an endogenous opioid system that acts through NPR-17, and that opioids regulate feeding via ASI neurons. Together, these results suggest C. elegans may be the first genetically tractable invertebrate opioid model.


Assuntos
Caenorhabditis elegans/metabolismo , Comportamento Alimentar/fisiologia , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Receptores Opioides/genética , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Sequência Conservada , Comportamento Alimentar/efeitos dos fármacos , Regulação da Expressão Gênica , Dados de Sequência Molecular , Morfina/farmacologia , Naloxona/farmacologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neuropeptídeos/genética , Receptores Opioides/deficiência , Transdução de Sinais , Inanição/metabolismo
18.
Sci Rep ; 5: 10647, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-26013573

RESUMO

We describe a new type of collective behavior in C. elegans nematodes, aggregation of starved L1 larvae. Shortly after hatching in the absence of food, L1 larvae arrest their development and disperse in search for food. In contrast, after two or more days without food, the worms change their behavior--they start to aggregate. The aggregation requires a small amount of ethanol or acetate in the environment. In the case of ethanol, it has to be metabolized, which requires functional alcohol dehydrogenase sodh-1. The resulting acetate is used in de novo fatty acid synthesis, and some of the newly made fatty acids are then derivatized to glycerophosphoethanolamides and released into the surrounding medium. We examined several other Caenorhabditis species and found an apparent correlation between propensity of starved L1s to aggregate and density dependence of their survival in starvation. Aggregation locally concentrates worms and may help the larvae to survive long starvation. This work demonstrates how presence of ethanol or acetate, relatively abundant small molecules in the environment, induces collective behavior in C. elegans associated with different survival strategies.


Assuntos
Caenorhabditis elegans/metabolismo , Inanição , Acetatos/metabolismo , Álcool Desidrogenase/metabolismo , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/metabolismo , Etanol/metabolismo , Ácidos Graxos/biossíntese , Larva/metabolismo
19.
PLoS One ; 9(7): e100580, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25029446

RESUMO

At the end of the first larval stage, the C elegans larva chooses between two developmental pathways, an L2 committed to reproductive development and an L2d, which has the option of undergoing reproductive development or entering the dauer diapause. I develop a quantitative model of this choice using mathematical tools developed for pricing financial options. The model predicts that the optimal decision must take into account not only the expected potential for reproductive growth, but also the uncertainty in that expected potential. Because the L2d has more flexibility than the L2, it is favored in unpredictable environments. I estimate that the ability to take uncertainty into account may increase reproductive value by as much as 5%, and discuss possible experimental tests for this ability.


Assuntos
Caenorhabditis elegans/crescimento & desenvolvimento , Modelos Biológicos , Incerteza , Envelhecimento/fisiologia , Animais , Caenorhabditis elegans/fisiologia , Larva/crescimento & desenvolvimento , Reprodução
20.
G3 (Bethesda) ; 4(12): 2535-43, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25378475

RESUMO

In wild-type Caenorhabditis elegans, the synapse from motor neuron M4 to pharyngeal terminal bulb (TB) muscles is silent, and the muscles are instead excited by gap junction connections from adjacent muscles. An eat-5 innexin mutant lacking this electrical connection has few TB contractions and is unable to grow well on certain foods. We showed previously that this defect can be overcome by activation of the M4 → TB synapse. To identify genes that negatively regulate synaptic transmission, we isolated new suppressors of eat-5. To our surprise, these suppressors included null mutations in NPQR-type calcium channel subunit genes unc-2 and unc-36. Our results are consistent with the hypothesis that Ca(2+) entry through the NPQR-type channel inhibits synaptic transmission by activating the calcium-activated K(+) channel SLO-1, thus antagonizing the EGL-19 L-type calcium channel.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Canais de Cálcio/metabolismo , Junção Neuromuscular/metabolismo , Transmissão Sináptica/fisiologia , Algoritmos , Animais , Animais Geneticamente Modificados/genética , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Cálcio/metabolismo , Canais de Cálcio/química , Canais de Cálcio/genética , Conexinas/genética , Conexinas/metabolismo , Genoma , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Musculares/antagonistas & inibidores , Proteínas Musculares/metabolismo , Taxa de Mutação , Transmissão Sináptica/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa