Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 14: 932, 2013 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-24377374

RESUMO

BACKGROUND: Faba bean (Vicia faba L.) is among the earliest domesticated crops from the Near East. Today this legume is a key protein feed and food worldwide and continues to serve an important role in culinary traditions throughout Middle East, Mediterranean region, China and Ethiopia. Adapted to a wide range of soil types, the main faba bean breeding objectives are to improve yield, resistance to biotic and abiotic stresses, seed quality and other agronomic traits. Genomic approaches aimed at enhancing faba bean breeding programs require high-quality genetic linkage maps to facilitate quantitative trait locus analysis and gene tagging for use in a marker-assisted selection. The objective of this study was to construct a reference consensus map in faba bean by joining the information from the most relevant maps reported so far in this crop. RESULTS: A combination of two approaches, increasing the number of anchor loci in diverse mapping populations and joining the corresponding genetic maps, was used to develop a reference consensus map in faba bean. The map was constructed from three main recombinant inbreed populations derived from four parental lines, incorporates 729 markers and is based on 69 common loci. It spans 4,602 cM with a range from 323 to 1041 loci in six main linkage groups or chromosomes, and an average marker density of one locus every 6 cM. Locus order is generally well maintained between the consensus map and the individual maps. CONCLUSION: We have constructed a reliable and fairly dense consensus genetic linkage map that will serve as a basis for genomic approaches in faba bean research and breeding. The core map contains a larger number of markers than any previous individual map, covers existing gaps and achieves a wider coverage of the large faba bean genome as a whole. This tool can be used as a reference resource for studies in different genetic backgrounds, and provides a framework for transferring genetic information when using different marker technologies. Combined with syntenic approaches, the consensus map will increase marker density in selected genomic regions and will be useful for future faba bean molecular breeding applications.


Assuntos
Mapeamento Cromossômico , Locos de Características Quantitativas , Vicia faba/genética , Cruzamento , Produtos Agrícolas/genética , Cruzamentos Genéticos , Ligação Genética , Marcadores Genéticos
2.
Foods ; 12(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37048186

RESUMO

Bread wheat has traditionally been selected for whitish derived flours. As a consequence, the current varieties carry carotenogenic alleles associated with low grain carotenoid. In contrast, high grain yellow pigment content (YPC) has been a major target in durum wheat programs since yellow colour is an important aesthetic factor for pasta production. Phytoene synthase 1 (Psy1) genes have an important role in the determination of the carotenoid content in wheat. In this work, we have transferred the genes Psy1-A1 and Psy1-B1 from durum to bread wheat by inter-specific hybridization in order to evaluate the combined effect of these genes for the improvement of grain carotenoid content, as well as the development of carotenoid-enriched bread wheat lines. Inter-specific breeding coupled with a MAS approach based on Psy1-A1 and Psy1-B1 alleles has allowed the development of bread wheat pre-breeding lines with enhanced grain carotenoid content (16-23% mean). These biofortified lines have the potential to become new varieties or to be used as recurrent parents in bread wheat breeding programs.

3.
Plants (Basel) ; 10(5)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065483

RESUMO

Hexaploid tritordeum is the amphiploid derived from the cross between the wild barley Hordeum chilense and durum wheat. This paper reviews the main advances and achievements in the last two decades that led to the successful development of tritordeum as a new crop. In particular, we summarize the progress in breeding for agronomic performance, including the potential of tritordeum as a genetic bridge for wheat breeding; the impact of molecular markers in genetic studies and breeding; and the progress in quality and development of innovative food products. The success of tritordeum as a crop shows the importance of the effective utilization of plant genetic resources for the development of new innovative products for agriculture and industry. Considering that wild plant genetic resources have made possible the development of this new crop, the huge potential of more accessible resources, such as landraces conserved in gene banks, goes beyond being sources of resistance to biotic and abiotic stresses. In addition, the positive result of tritordeum also shows the importance of adequate commercialization strategies and demonstrative experiences aimed to integrate the whole food chain, from producers to end-point sellers, in order to develop new products for consumers.

4.
Plants (Basel) ; 10(6)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34205906

RESUMO

Durum wheat landraces have a high potential for breeding but they remain underexploited due to several factors, including the insufficient evaluation of these plant materials and the lack of efficient selection tools for transferring target traits into elite backgrounds. In this work, we characterized 150 accessions of the Spanish durum wheat collection for stem cross section, height and heading date. Continuous variation and high heritabilities were recorded for the stem area, pith area, pith diameter, culm wall thickness, height and heading date. The accessions were genotyped with DArTSeq markers, which were aligned to the durum wheat 'Svevo' genome. The markers corresponding to genes, with a minor allele frequency above 5% and less than 10% of missing data, were used for genome-wide association scan analysis. Twenty-nine marker-trait associations (MTAs) were identified and compared with the positions of previously known QTLs. MTAs for height and heading date co-localized with the QTLs for these traits. In addition, all the MTAs for stem traits in chromosome 2B were located in the corresponding synteny regions of the markers associated with lodging in bread wheat. Finally, several MTAs for stem traits co-located with the QTL for wheat stem sawfly (WSS) resistance. The results presented herein reveal the same genomic regions in chromosome 2B are involved in the genetic control of stem traits and lodging tolerance in both durum and bread wheat. In addition, these results suggest the importance of stem traits for WSS resistance and the potential of these landraces as donors for lodging tolerance and WSS resistance enhancement. In this context, the MTAs for stem-related traits identified in this work can serve as a reference for further development of markers for the introgression of target traits into elite material.

5.
Sci Rep ; 10(1): 14299, 2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32868815

RESUMO

Faba bean (Vicia faba L.) is an important protein-rich fodder crop, which is widely cultivated in temperate areas. However, antinutritional compounds such as condensed tannins, limit the use of this protein source in monogastric feed formulations. Previous studies demonstrated that two recessive and complementary genes, zt1 and zt2, control absence of tannin and white flower colour in faba bean. An ortholog of the Medicago WD40 transcription factor TTG1 was reported to encode the zt1 phenotype, but the responsible gene for zt2 is still unknown. Here we used a candidate gene approach combined with linkage mapping, comparative genomics and gene expression to fine map the zt2 genomic region and to identify the regulatory gene controlling both traits. Seventy-two genes, including 23 MYB and bHLH regulatory genes predicted to be associated with anthocyanin expression together with WRKY proteins, were screened and genotyped in three mapping populations. The linkage groups constructed identified the regulatory gene, TRANSPARENT TESTA8 (TT8), encoding a basic helix-loop-helix (bHLH) transcription factor, as the candidate for zt2. This finding was supported by qPCR analysis and further validated in different genetic backgrounds. Accordingly, VfTT8 was downregulated in white flowered types while showing high levels of expression in wild genotypes. Our results provide new insights on the regulatory mechanisms of tannin biosynthesis in faba bean and will facilitate the development of an ultimate zt2 diagnostic marker for the fast generation of new value-added cultivars free of tannins and with improved nutritional value.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Plantas/genética , Taninos/metabolismo , Vicia faba/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Mapeamento Cromossômico , Genes de Plantas/genética , Loci Gênicos/genética , Técnicas de Genotipagem , Proteínas de Plantas/metabolismo , Característica Quantitativa Herdável , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Taninos/análise , Vicia faba/química , Vicia faba/metabolismo
6.
BMC Genomics ; 9: 380, 2008 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-18691425

RESUMO

BACKGROUND: The development of genetic markers is complex and costly in species with little pre-existing genomic information. Faba bean possesses one of the largest and least studied genomes among cultivated crop plants and no gene-based genetic maps exist. Gene-based orthologous markers allow chromosomal regions and levels of synteny to be characterised between species, reveal phylogenetic relationships and chromosomal evolution, and enable targeted identification of markers for crop breeding. In this study orthologous codominant cross-species markers have been deployed to produce the first exclusively gene-based genetic linkage map of faba bean (Vicia faba), using an F6 population developed from a cross between the lines Vf6 (equina type) and Vf27 (paucijuga type). RESULTS: Of 796 intron-targeted amplified polymorphic (ITAP) markers screened, 151 markers could be used to construct a comparative genetic map. Linkage analysis revealed seven major and five small linkage groups (LGs), one pair and 12 unlinked markers. Each LG was comprised of three to 30 markers and varied in length from 23.6 cM to 324.8 cM. The map spanned a total length of 1685.8 cM. A simple and direct macrosyntenic relationship between faba bean and Medicago truncatula was evident, while faba bean and lentil shared a common rearrangement relative to M. truncatula. One hundred and four of the 127 mapped markers in the 12 LGs, which were previously assigned to M. truncatula genetic and physical maps, were found in regions syntenic between the faba bean and M. truncatula genomes. However chromosomal rearrangements were observed that could explain the difference in chromosome numbers between these three legume species. These rearrangements suggested high conservation of M. truncatula chromosomes 1, 5 and 8; moderate conservation of chromosomes 2, 3, 4 and 7 and no conservation with M. truncatula chromosome 6. Multiple PCR amplicons and comparative mapping were suggestive of small-scale duplication events in faba bean. This study also provides a preliminary indication for finer scale macrosynteny between M. truncatula, lentil and faba bean. Markers originally designed from genes on the same M. truncatula BACs were found to be grouped together in corresponding syntenic areas in lentil and faba bean. CONCLUSION: Despite the large size of the faba bean genome, comparative mapping did not reveal evidence for polyploidisation, segmental duplication, or significant rearrangements compared to M. truncatula, although a bias in the use of single locus markers may have limited the detection of duplications. Non-coding repetitive DNA or transposable element content provides a possible explanation for the difference in genome sizes. Similar patterns of rearrangements in faba bean and lentil compared to M. truncatula support phylogenetic studies dividing these species into the tribes Viceae and Trifoliae. However, substantial macrosynteny was apparent between faba bean and M. truncatula, with the exception of chromosome 6 where no orthologous markers were found, confirming previous investigations suggesting chromosome 6 is atypical. The composite map, anchored with orthologous markers mapped in M. truncatula, provides a central reference map for future use of genomic and genetic information in faba bean genetic analysis and breeding.


Assuntos
Genoma de Planta , Lens (Planta)/genética , Vicia faba/genética , Sequência de Bases , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos/genética , Sequência Conservada , Primers do DNA/genética , DNA de Plantas/genética , Marcadores Genéticos , Genômica , Hibridização Genética , Medicago truncatula/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa