Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Parasitol Res ; 121(12): 3503-3512, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36171407

RESUMO

The parasite Trichomonas vaginalis is the aetiologic agent of trichomoniasis, the most common non-viral sexually transmitted disease worldwide. This infection often remains asymptomatic and is related to several health complications. The traditional treatment for trichomoniasis uses drugs of the 5-nitroimidazole family, such as metronidazole; however, scientific reports indicate an increasing number of drug-resistant strains. Antimicrobial peptides could be an alternative or complementary treatment. In this sense, one attractive candidate is the human cathelicidin, being LL-37 its active form. LL-37 possesses microbicidal activity against many microorganisms such as bacteria, Candida albicans, and Entamoeba histolytica. Shorter sequences derived from this peptide, such as KR-20, FK-13 and KR-12, have been shown to possess a higher microbicidal effect than LL-37. In this study, we determined the activity of LL-37 and its derivatives against T. vaginalis, which was unknown. The results showed that the four peptides (LL-37, KR-20, FK-13-NH2 and KR-12) decreased the viability of T. vaginalis on a 5-nitroimidazole-sensitive and a 5-nitroimidazole-resistant strain; however, KR-20 was the most effective peptide, followed by FK-13-NH2. Low concentrations of all peptides showed a better effect when combined with metronidazole in the sensitive and resistant T. vaginalis strains. These results are promising for potential future therapeutic uses.


Assuntos
Antiprotozoários , Tricomoníase , Trichomonas vaginalis , Humanos , Metronidazol/farmacologia , Peptídeos Antimicrobianos , Resistência a Medicamentos , Antiprotozoários/farmacologia
2.
Parasitol Res ; 121(5): 1355-1367, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35258690

RESUMO

Trichomoniasis-caused by the parasite Trichomonas vaginalis-is associated with a high inflammatory process that may contribute to the risk of suffering from other medical complications. Our study focused on the in vitro interaction of T. vaginalis with human neutrophils because these are the most abundant cells implicated in the characteristic inflammatory process of trichomoniasis. This study showed that T. vaginalis and its surface glycoconjugates (lipophosphoglycan and/or lipoglycan) induced the formation of human neutrophil extracellular traps (NETs). After the trichomonad-neutrophil interaction, parasite integrity was at 32.9%, and the subsequent parasite growth was at 35.2% compared to those of control trophozoites (100%) incubated under the same conditions without neutrophils. In the presence of an antibody against the TLR-4 receptor, DNase I or micrococcal nuclease (MNase), neutrophils reduced the DNA fibres of the NETs and the amount of extracellular DNA, allowing a higher subsequent growth of T. vaginalis, at 52% with the anti-TLR-4 antibody and 62.6% with the enzymes. These results indicated that T. vaginalis induced the formation of extracellular traps by human neutrophils and, because of the interaction with neutrophils and NETs, parasite integrity and growth decreased.


Assuntos
Armadilhas Extracelulares , Parasitos , Tricomoníase , Trichomonas vaginalis , Animais , Humanos , Neutrófilos , Tricomoníase/parasitologia
3.
J Biochem Mol Toxicol ; 35(10): e22875, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34350654

RESUMO

Kidney injury molecule-1 (KIM-1) is a membrane receptor upregulated in the proximal tubule cells following various types of kidney injuries. Notably, studies have suggested a correlation between KIM-1 expression and extracellular signal-regulated kinase (ERK) activation. In this study, we aimed to investigate the association between the kidney overexpression pattern of cytoplasmic phosphorylated-ERK (p-ERK) protein and increased urinary KIM-1 levels in rats exposed to gentamicin or lead acetate, both at the end of toxic exposure and after a 4-week recovery period. Although other proteins were evaluated, only kidney overexpression of cytoplasmic p-ERK protein correlated with increased urinary KIM-1 levels. For both toxic substances, the increased urinary KIM-1 levels corresponded with kidney inflammation. Our results suggest that KIM-1 and p-ERK share a common mechanism in kidney injury mediated by both toxic substances that induce proximal tubule damage.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/urina , Moléculas de Adesão Celular/urina , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Gentamicinas/toxicidade , Túbulos Renais Proximais/lesões , Túbulos Renais Proximais/metabolismo , Compostos Organometálicos/toxicidade , Transdução de Sinais/efeitos dos fármacos , Animais , Canais de Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Citoplasma/metabolismo , Modelos Animais de Doenças , Histonas/metabolismo , Masculino , Fosforilação , Ratos , Ratos Wistar , Canais de Cátion TRPV/metabolismo
4.
Parasitology ; 146(13): 1636-1645, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31391128

RESUMO

Trichomonas vaginalis is an extracellular parasite that colonizes the human urogenital tract leading to trichomoniasis, the most common sexually-transmitted non-viral disease worldwide. The immune response plays a critical role in the host defense against this parasite. Trichomonas' DNA contains unmethylated CpG motifs (CpGDNA) that in other microorganisms act as modulators of the immune response. However, the molecular mechanisms responsible for CpGDNA immune modulation are still unclear. As macrophages participate in the first line of defense against infection, we investigated the type of immune response of murine macrophages to T. vaginalis DNA (TvDNA). We observed high expression of the proinflammatory cytokines IL-6 and IL-12p40 in macrophages stimulated with TvDNA. In contrast, the anti-inflammatory response, assessed by IL-10 and IL-13 mRNA expression was delayed. This suggests that the immune response induced by TvDNA is modulated through cytokine production, mediated partly by NADPH-oxidase activity, as TvDNA induced reactive species of oxygen production and a rounded morphology in macrophages indicative of an M1 phenotype. Furthermore, infected mice pretreated with TvDNA displayed persistent vulvar inflammation and decreased parasite viability consistent with higher proinflammatory cytokine levels during infection compared to untreated mice. Overall, our findings suggest that TvDNA pretreatment modulates the immune response favouring parasite elimination.


Assuntos
Citocinas/imunologia , DNA de Protozoário/administração & dosagem , Macrófagos/parasitologia , Trichomonas vaginalis/fisiologia , Animais , Ilhas de CpG , Feminino , Imunomodulação , Inflamação , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , NADPH Oxidases/metabolismo , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Vulva/imunologia , Vulva/fisiopatologia
5.
Exp Parasitol ; 133(3): 300-6, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23274811

RESUMO

The human cathelicidin hCAP18/LL-37 is an antimicrobial protein consisting of a conserved N-terminal prosequence called the cathelin-like domain and a C-terminal peptide called LL-37. This peptide contains 37 amino acid residues, and several truncated variants obtained from natural sources or by chemical synthesis differ in their capability to damage Gram positive and Gram negative bacteria as well as Candida albicans. KR-12 is the shortest peptide (12 amino acids) of LL-37 that has conserved antibacterial activity. In addition to LL-37, other active cathelicidin-derived peptides have been reported; for instance, the peptides KR-20, a 20-aa derivative of LL-37, and KS-30, a 30-aa derivative of LL-37, have been found in human sweat. Both peptides exhibit an overall increased antibacterial and antifungal activity when compared with LL-37. We investigated the effect of LL-37 and three peptides derived from this antimicrobial molecule, KR-12, KR-20 and KS-30, on the integrity of Entamoeba histolytica trophozoites. The four peptides showed effects on E. histolytica integrity and viability in the concentration range of 10-50 µM. The peptides KR-12, KR-20, KS-30 and LL-37 differed in their capability to damage the parasite integrity, with KR-20 being the most effective and with KR-12 and LL-37 being less active. These results demonstrate the ability of antimicrobial peptides derived from human cathelicidin to damage Entamoeba trophozoites. Moreover, it was shown that the integrity of the peptides is altered in the presence of an ameba soluble fraction with cysteine protease activity.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Antiprotozoários/farmacologia , Entamoeba histolytica/efeitos dos fármacos , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/metabolismo , Antiprotozoários/química , Antiprotozoários/isolamento & purificação , Antiprotozoários/metabolismo , Catelicidinas/isolamento & purificação , Catelicidinas/metabolismo , Catelicidinas/farmacologia , Cisteína Proteases/metabolismo , Entamoeba histolytica/enzimologia , Entamoeba histolytica/crescimento & desenvolvimento , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Hemólise , Humanos , Fragmentos de Peptídeos/isolamento & purificação , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Trofozoítos/efeitos dos fármacos , Trofozoítos/crescimento & desenvolvimento
6.
Microbiology (Reading) ; 157(Pt 1): 209-219, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20847004

RESUMO

Transferrin (Tf) is a host glycoprotein capable of binding two ferric-iron ions to become holotransferrin (holoTf), which transports iron in to all cells. Entamoeba histolytica is a parasitic protozoan able to use holoTf as a sole iron source in vitro. The mechanism by which this parasite scavenges iron from holoTf is unknown. An E. histolytica holoTf-binding protein (EhTfbp) was purified by using an anti-human transferrin receptor (TfR) monoclonal antibody. EhTfbp was identified by MS/MS analysis and database searches as E. histolytica acetaldehyde/alcohol dehydrogenase-2 (EhADH2), an iron-dependent enzyme. Both EhTfbp and EhADH2 bound holoTf and were recognized by the anti-human TfR antibody, indicating that they correspond to the same protein. It was found that the amoebae internalized holoTf through clathrin-coated pits, suggesting that holoTf endocytosis could be important for the parasite during colonization and invasion of the intestinal mucosa and liver.


Assuntos
Álcool Desidrogenase/metabolismo , Aldeído Oxirredutases/metabolismo , Clatrina/metabolismo , Endocitose , Entamoeba histolytica/metabolismo , Interações Hospedeiro-Patógeno , Transferrina/metabolismo , Álcool Desidrogenase/isolamento & purificação , Aldeído Oxirredutases/isolamento & purificação , Vesículas Revestidas por Clatrina/metabolismo , Humanos , Proteínas de Protozoários/isolamento & purificação , Proteínas de Protozoários/metabolismo , Espectrometria de Massas em Tandem
7.
Curr Microbiol ; 62(1): 301-6, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20640424

RESUMO

Antimicrobial peptides are widely distributed in nature; they play important roles in several aspects of innate immunity and may provide a basis for the design of novel therapeutic agents. In this study, C-amidated tritrpticin, a 13 amino acid tryptophan-rich antimicrobial peptide derived from a porcine cathelicidin, was tested against Trichomonas vaginalis, a protozoan that causes a serious non-viral sexually transmitted disease associated with preterm birth, low birth weight, and high risk of HIV-1 infection. Tritrpticin was selected due to its reasonably easy synthesis and because analogs with lower toxicity may be designed. Our results show that tritrpticin-NH(2) at either 100 or 200 µg/ml (52.5 or 105 µM) clearly reduces the viability and growth of Trichomonas vaginalis. Together with tritrpticin-NH(2), sodium bicarbonate further limited trichomonad growth. Additionally, a low concentration of metronidazole (5.8 µM), the most commonly used medication for Trichomonas vaginalis, was more effective against the growth of the parasite when it was combined with tritrpticin-NH(2).


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Antiprotozoários/farmacologia , Oligopeptídeos/farmacologia , Trichomonas vaginalis/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Humanos , Metronidazol/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Testes de Sensibilidade Parasitária , Bicarbonato de Sódio/farmacologia , Trichomonas vaginalis/crescimento & desenvolvimento , Trichomonas vaginalis/fisiologia
8.
Parasitol Int ; 57(4): 417-23, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18571975

RESUMO

The protozoan Entamoeba histolytica is the etiological agent of amebiasis, an infection with high prevalence worldwide. The host-ameba relationship outcome depends on parasite and host factors, and among these is secretory IgA. These antibodies reduce mucosal colonization by pathogens and neutralize a variety of toxins and enzymes. The functionality of secretory IgA depends on its integrity. Some bacteria produce IgA proteases that cleave mainly the IgA1 subclass; live E. histolytica trophozoites, and other ameba fractions are also able to degrade human IgA. The aim of this study was to determine if serum and secretory IgA, its subclasses and secretory component, are degraded by cysteine proteases, which are present and active on the surface of glutaraldehyde-fixed amebas. It was observed that secretory IgA1, IgA2, free and IgA-bound secretory component were degraded by E. histolytica surface-associated cysteine proteinases. Secretory IgA2, although it was degraded, conserved its ability to agglutinate live amebas better than IgA1. Therefore, while specificity of known ameba cysteine proteases is cathepsin B-like and is different from bacterial IgA proteases, IgA2 was functionally more resistant than IgA1 to ameba surface-associated cysteine protease degradation, similar to the greater resistance of IgA2 to bacterial IgA-specific proteases.


Assuntos
Cisteína Endopeptidases/metabolismo , Entamoeba histolytica/enzimologia , Imunoglobulina A Secretora/metabolismo , Imunoglobulina A/metabolismo , Proteínas de Membrana/metabolismo , Aglutinação , Animais , Colostro/imunologia , Entamoeba histolytica/crescimento & desenvolvimento , Entamoeba histolytica/imunologia , Entamoeba histolytica/patogenicidade , Entamebíase/parasitologia , Feminino , Glutaral , Humanos , Imunoglobulina A/sangue , Imunoglobulina A/imunologia , Imunoglobulina A Secretora/imunologia , Gravidez , Proteínas de Protozoários/metabolismo , Trofozoítos/imunologia , Trofozoítos/metabolismo
9.
Mol Biochem Parasitol ; 207(2): 68-74, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27234208

RESUMO

ADP-ribosyl transferases are enzymes involved in the post-translational modification of proteins; they participate in multiple physiological processes, pathogenesis and host-pathogen interactions. Several reports have characterized the functions of these enzymes in viruses, prokaryotes and higher eukaryotes, but few studies have reported ADP-ribosyl transferases in lower eukaryotes, such as parasites. The locus EHI_155600 from Entamoeba histolytica encodes a hypothetical protein that possesses a domain from the ADP-ribosylation superfamily; this protein belongs to the diphtheria toxin family according to a homology model using poly-ADP-ribosyl polymerase 12 (PARP12 or ARTD12) as a template. The recombinant protein expressed in Escherichia coli exhibited in vitro ADP-ribosylation activity that was dependent on the time and temperature. Unlabeled ßNAD(+), but not ADP-ribose, competed in the enzymatic reaction using biotin-ßNAD(+) as the ADP-ribose donor. The recombinant enzyme, denominated EhToxin-like, auto-ADP-ribosylated and modified an acceptor from E. coli that was identified by MS/MS as the elongation factor Tu (EF-Tu). To the best of our knowledge, this is the first report to identify an ADP-ribosyl transferase from the diphtheria toxin family in a protozoan parasite. The known toxins from this family (i.e., the diphtheria toxin, the Pseudomonas aeruginosa toxin Exo-A, and Cholix from Vibrio cholerae) modify eukaryotic elongation factor two (eEF-2), whereas the amoeba EhToxin-like modified EF-Tu, which is another elongation factor involved in protein synthesis in bacteria and mitochondria.


Assuntos
ADP Ribose Transferases/metabolismo , Toxina Diftérica/metabolismo , Entamoeba histolytica/enzimologia , Escherichia coli/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , ADP Ribose Transferases/química , ADP Ribose Transferases/genética , Toxina Diftérica/química , Toxina Diftérica/genética , Escherichia coli/metabolismo , Modelos Moleculares , Fator Tu de Elongação de Peptídeos/química , Biossíntese de Proteínas , Conformação Proteica , Proteínas Recombinantes/metabolismo
10.
PLoS One ; 11(7): e0158979, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27415627

RESUMO

Neutrophil defense mechanisms include phagocytosis, degranulation and the formation of extracellular traps (NET). These networks of DNA are triggered by several immune and microbial factors, representing a defense strategy to prevent microbial spread by trapping/killing pathogens. This may be important against Entamoeba histolytica, since its large size hinders its phagocytosis. The aim of this study was to determine whether E. histolytica and their lipopeptidophosphoglycan (EhLPPG) induce the formation of NETs and the outcome of their interaction with the parasite. Our data show that live amoebae and EhLPPG, but not fixed trophozoites, induced NET formation in a time and dose dependent manner, starting at 5 min of co-incubation. Although immunofluorescence studies showed that the NETs contain cathelicidin LL-37 in close proximity to amoebae, the trophozoite growth was only affected when ethylene glycol tetra-acetic acid (EGTA) was present during contact with NETs, suggesting that the activity of enzymes requiring calcium, such as DNases, may be important for amoeba survival. In conclusion, E. histolytica trophozoites and EhLPPG induce in vitro formation of human NETs, which did not affect the parasite growth unless a chelating agent was present. These results suggest that NETs may be an important factor of the innate immune response during infection with E. histolytica.


Assuntos
Entamoeba histolytica/fisiologia , Armadilhas Extracelulares/fisiologia , Neutrófilos/fisiologia , Peptidoglicano/farmacologia , Fosfolipídeos/farmacologia , Trofozoítos/fisiologia , Ácido Egtázico/farmacologia , Entamoeba histolytica/patogenicidade , Entamebíase/fisiopatologia , Armadilhas Extracelulares/efeitos dos fármacos , Imunofluorescência , Humanos , Neutrófilos/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Fagocitose/fisiologia
11.
J Biomed Mater Res A ; 104(11): 2810-22, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27387409

RESUMO

The extracellular matrix molecules remaining in bioscaffolds derived from decellularized xenogeneic tissues appear to be important for inducing cell functions conducting tissue regeneration. Here, we studied whether decellularization methods, that is, detergent Triton X-100 (TX) alone and TX combined with reversible alkaline swelling (STX), applied to bovine pericardial tissue, could affect the bioscaffold components. The in vitro macrophage response, subdermal biodegradation, and cell infiltration were also studied. The results indicate a lower leaching of fibronectin, but a higher leaching of laminin and sulfated glycosaminoglycans from tissues decellularized with STX and TX, respectively. The in vitro secretion of interleukin-6 and monocyte chemoattractant protein by RAW264.7 macrophages is promoted by decellularized bioscaffold leachates. A lower polymorphonuclear cell density is observed around decellularized bioscaffolds at 1-day implantation; concurrently showing a higher cell infiltration in STX- than in TX-implant. Cells infiltrated into TX-implant show a fibroblastic morphology at 7-day implantation, concurrently the capillary formation is observed at 14-day. Pericardial bioscaffolds suffer biodegradation more pronounced in STX- than in TX-implant. Both TX and STX decellularization methods favor a high leaching of basal lamina components, which presumably promotes a faster macrophage stimulation compared to nondecellularized tissue, and appear to be associated with an increased host cell infiltration in a rat subdermal implantation. Meanwhile, the connective tissue components leaching from TX decellularized bioscaffolds, unlike the STX ones, appear to be associated with an enhanced angiogenesis accompanied by an early-promoted fibroblastic cell transition. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2810-2822, 2016.


Assuntos
Bioprótese , Macrófagos/imunologia , Pericárdio/química , Pericárdio/citologia , Alicerces Teciduais/química , Animais , Bioprótese/efeitos adversos , Bovinos , Citocinas/análise , Citocinas/imunologia , Detergentes/química , Macrófagos/citologia , Camundongos , Pericárdio/imunologia , Células RAW 264.7 , Ratos Wistar , Engenharia Tecidual , Alicerces Teciduais/efeitos adversos
12.
J Parasitol ; 90(2): 373-8, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15165062

RESUMO

Entamoeba histolytica is a protozoan parasite that can invade the intestinal mucosa. Infection induces production of secretory immunoglobulin A (SIgA) antibodies that can diminish the adhesion between E. histolytica trophozoites and epithelial cells in vitro and reduce the rate of new infections in children. SIgA antibodies produced by asymptomatic cyst carriers could play a protective role against the damage caused by E. histolytica. To identify membrane antigens capable of inducing SIgA response in E. histolytica cyst carriers, salivary SIgA antibodies were confronted with blotted plasma membrane proteins from amebae. A surface 115-kDa ameba protein was recognized by 62% of the human SIgA antibodies tested. The 115-kDa protein is not a mannose-containing glycoprotein and has no protease activity. Rabbit anti-115-kDa protein antibodies were capable of reducing erythrophagocytosis but were unable to protect culture cells from the cytopathic damage caused by E. histolytica. However, anti-115-kDa protein antibodies induced surface receptor redistribution.


Assuntos
Portador Sadio/imunologia , Entamoeba histolytica/imunologia , Entamebíase/imunologia , Imunoglobulina A Secretora/imunologia , Proteínas de Membrana/imunologia , Proteínas de Protozoários/imunologia , Animais , Antígenos de Protozoários/imunologia , Antígenos de Superfície/imunologia , Eritrócitos/imunologia , Feminino , Humanos , Immunoblotting , Epitopos Imunodominantes/imunologia , Fagocitose , Saliva/imunologia
13.
J Parasitol ; 88(2): 217-22, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12058720

RESUMO

The protozoan parasite Entamoeba histolytica is an ancient eukaryotic cell that shows morphologically atypical organelles and differs metabolically from higher eukaryotic cells. The aim of this study was to determine the subcellular localization of ameba NAD+-dependent alcohol dehydrogenase (ADH2). The enzyme activity was present in soluble and mainly in particulate material whose density was 1.105 in a sucrose gradient. By differential centrifugation, most of the ADH activity sedimented at 160,000 g (160,000-g pellet), similar to the Escherichia coli polymeric ADHE. In the Coomassie staining of the 160,000-g pellet analyzed by electrophoresis, a 96-kDa protein was more prominent than in other fractions; this band was recognized by antibodies against Lactococcus lactis ADHE. By gold labeling, the antibodies recognized the granular material that mainly constitutes the 160,000-g pellet and a material that sedimented along with the internal membrane vesicles. By negative staining, the 160,000-g fraction showed helical rodlike structures with an average length of 103 nm; almost no membrane vesicles were observed in this pellet. In internal membrane fractions, no rodlike structures were found, but protomerlike round structures were observed. These results indicate that the main amebic NAD+-dependent ADH2 activity is naturally organized as rodlike helical particles, similar to bacterial ADHE. Detection of ADH2 in membrane fractions might be explained by cosedimentation of the multimeric ADH during membrane purification.


Assuntos
Álcool Desidrogenase/metabolismo , Entamoeba histolytica/enzimologia , Fosfatase Ácida/metabolismo , Animais , Western Blotting , Cistos Ósseos/enzimologia , Membrana Celular/enzimologia , Membrana Celular/ultraestrutura , Centrifugação Isopícnica , Entamoeba histolytica/ultraestrutura , Microscopia Eletrônica
14.
Acta Biomater ; 7(3): 1241-8, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21094703

RESUMO

Bovine pericardium is a collagenous tissue commonly used as a natural biomaterial in the fabrication of cardiovascular devices. For tissue engineering purposes, this xenogeneic biomaterial must be decellularized to remove cellular antigens. With this in mind, three decellularization protocols were compared in terms of their effectiveness to extract cellular materials, their effect on glycosaminoglycan (GAG) content and, finally, their effect on tensile biomechanical behavior. The tissue decellularization was achieved by treatment with t-octyl phenoxy polyethoxy ethanol (Triton X-100), tridecyl polyethoxy ethanol (ATE) and alkaline treatment and subsequent treatment with nucleases (DNase/RNase). The quantified residual DNA content (3.0±0.4%, 4.4±0.6% and 5.6±0.7% for Triton X-100, ATE and alkaline treatment, respectively) and the absence of nuclear structures (hematoxylin and eosin staining) were indicators of effective cell removal. In the same way, it was found that the native tissue GAG content decreased to 61.6±0.6%, 62.7±1.1% and 88.6±0.2% for Triton X-100, ATE and alkaline treatment, respectively. In addition, an alteration in the tissue stress relaxation characteristics was observed after alkaline treatment. We can conclude that the three decellularization agents preserved the collagen structural network, anisotropy and the tensile modulus, tensile strength and maximum strain at failure of native tissue.


Assuntos
Glicosaminoglicanos/metabolismo , Pericárdio/citologia , Animais , Fenômenos Biomecânicos , Bovinos , Elasticidade , Microscopia Eletrônica de Varredura , Pericárdio/metabolismo , Resistência à Tração
15.
Curr Microbiol ; 51(3): 171-4, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16086106

RESUMO

The human parasite Entamoeba histolytica is an amitochondrial protozoan whose metabolism depends on glucose fermentation. Among the metabolic enzymes absolutely required for amoeba growth is the NAD+-dependent alcohol dehydrogenase (EhADH2). The polymeric form of EhADH2 was sedimented at 160,000 g, and in this fraction we observed [32P]-labeling of a 96-kDa protein under mono-ADP-ribosylation conditions with [32P]NAD+. The [32P]-labeled protein had the same molecular weight as the EhADH2 monomer. Because of the importance of monoADP-ribosylation in the regulation of many physiological processes, the aim of this study was to determine whether EhADH2 is ADP-ribosylated, and what would be the consequence of this modification on its alcohol and aldehyde dehydrogenase enzymatic activities. This study describes the ADP-ribosylation of EhADH2. This modification did not have an effect on the enzymatic activities, but it may regulate other functions of EhADH2.


Assuntos
Álcool Desidrogenase/metabolismo , Entamoeba histolytica/metabolismo , NAD/análogos & derivados , NAD/metabolismo , Álcool Desidrogenase/química , Álcool Desidrogenase/isolamento & purificação , Animais , Centrifugação , Peso Molecular
16.
J Eukaryot Microbiol ; 49(6): 454-9, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12503680

RESUMO

Due to the important role of monoADP-ribosyl transferases in physiological and pathological events, we investigated whether the protozoan parasite Entamoeba histolytica had monoADP-ribosyl transferase activity. Reactions were initiated using ameba-free medium as the source of both enzyme and ADP-ribosylation substrate(s) and [32P]NAD+ as source of ADP-ribose. Proteins were analyzed by electrophoresis, and [32P]-labeled proteins were detected by autoradiography. Using the crude extracellular medium, a major labeled product of Mr 37.000 was observed. The yield of this product was reduced markedly using medium from Brefeldin A-treated trophozoites, indicating that the extracellular monoADP-ribosyl transferase and/or its substrate depended on vesicular transport. The labeling of the 37-kDa substrate was dependent on reaction time, temperature, pH, and the ratio of unlabeled NAD+ to [32P]NAD+. After two purification steps, several new substrates were observed, perhaps due to their enrichment. The reaction measured ADP-ribosylation since [14C-carbonyl]NAD+ was not incorporated into ameba substrates and a 75-fold molar excess of ADP-ribose caused no detectable inhibition of the monoADP-ribosyl transferase reaction. On the basis of sensitivity to NH2OH, the extracellular monoADP-ribosyl transferase of E. histolytica may be an arginine-specific enzyme. These results demonstrate the existence in E. histolytica of at least one extracellular monoADP-ribosyl transferase, whose localization depends upon a secretion process.


Assuntos
ADP Ribose Transferases/metabolismo , Entamoeba histolytica/enzimologia , Adenosina Difosfato Ribose/metabolismo , Animais , Arginina/metabolismo , Toxinas Botulínicas/metabolismo , Brefeldina A/farmacologia , Meios de Cultura , Entamoeba histolytica/crescimento & desenvolvimento , Especificidade por Substrato
17.
Anal Biochem ; 328(1): 14-21, 2004 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15081902

RESUMO

Preparation of a nitrate reductase lysate of Escherichia coli MC1061 to measure nitrate and nitrite in biologic fluids is described. To obtain the crude bacterial lysate containing nitrate reductase activity, E. coli MC1061 was subjected to 16-20 freeze-thawing cycles, from -70 to 60 degrees C, until nitrite reductase activity was < or = 25%. Nitrate reductase activity was detected mainly in the crude preparation. To validate the nitrate reduction procedure, standard nitrate solutions (1.6-100 microM) were incubated with the nitrate reductase preparation for 3 h at 37 degrees C, and nitrite was estimated by the Griess reaction in a microassay. Nitrate solutions were reduced to nitrite in a range of 60-70%. Importantly, no cofactors were necessary to perform nitrate reduction. The biological samples were first reduced with the nitrate reductase preparation. After centrifugation, samples were deproteinized with either methanol/ether or zinc sulfate and nitrite was quantified. The utility of the nitrate reductase preparation was assessed by nitrate+nitrite determination in serum of animals infected with the protozoan Entamoeba histolytica or the bacteria E. coli and in the supernatant of cultured lipopolysaccharide-stimulated RAW 264.7 mouse macrophages. Our results indicate that the nitrate reductase-containing lysate provides a convenient tool for the reduction of nitrate to determine nitrate+nitrite in biological fluids by spectrophotometric methods.


Assuntos
Nitrato Redutases , Nitratos , Óxido Nítrico/análise , Animais , Entamoeba histolytica/metabolismo , Escherichia coli , Modelos Lineares , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Camundongos , Nitrato Redutase , Óxido Nítrico/biossíntese
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa