RESUMO
The role of nitrergic system in modulating the action of psychostimulants on reward processing is well established. However, the relevant anatomical underpinnings and scope of the involved interactions with mesolimbic dopaminergic system have not been clarified. Using immunohistochemistry, we track the changes in neuronal nitric oxide synthase (nNOS) containing cell groups in the animals conditioned to intracranial self-stimulation (ICSS) via an electrode implanted in the lateral hypothalamus-medial forebrain bundle (LH-MFB) area. An increase in the nNOS immunoreactivity was noticed in the cells and fibers in the ventral tegmental area (VTA) and nucleus accumbens shell (AcbSh), the primary loci of the reward system. In addition, nNOS was up-regulated in the nucleus accumbens core (AcbC), vertical limb of diagonal band (VDB), locus coeruleus (LC), lateral hypothalamus (LH), superficial gray layer (SuG) of the superior colliculus, and periaqueductal gray (PAG). The brain tissue fragments drawn from these areas showed a change in nNOS mRNA expression, but in opposite direction. Intracerebroventricular (icv) administration of nNOS inhibitor, 7-nitroindazole (7-NI) showed decreased lever press activity in a dose-dependent manner in ICSS task. While an increase in the dopamine (DA) and 3, 4-dihydroxyphenylacetic acid (DOPAC) efflux was noted in the microdialysates collected from the AcbSh of ICSS rats, pre-administration of 7-NI (icv route) attenuated the response. The study identifies nitrergic centers that probably mediate sensory, cognitive, and motor components of the goal-directed behavior.
Assuntos
Óxido Nítrico Sintase Tipo I , Autoestimulação , Animais , Masculino , Ratos , Óxido Nítrico Sintase Tipo I/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Ratos Sprague-Dawley , Indazóis/farmacologia , Inibidores Enzimáticos/farmacologiaRESUMO
Neuropeptide cocaine- and amphetamine-regulated transcript (CART) is known to influence the activity of the canonical mesolimbic dopaminergic pathway and modulate reward seeking behaviour. CART neurons of the lateral hypothalamus (LH) send afferents to the ventral tegmental area (VTA) and paraventricular thalamic nucleus (PVT) and these nuclei, in turn, send secondary projections to nucleus accumbens. We try to dissect the precise sites of CART's action in these circuits in promoting reward. Rats were implanted with bipolar electrode targeted at the lateral hypothalamus-medial forebrain bundle (LH-MFB) and trained to press the lever through intracranial self-stimulation (ICSS) protocol. CART (55-102) administered directly into posterior VTA (pVTA) or PVT of the conditioned rats significantly increased the number of lever presses, indicating reward-promoting activity of the peptide. Concomitant increase in dopamine (DA) and 3, 4-dihydroxyphenylacetic acid (DOPAC) efflux was noted in the microdialysate collected from the nucleus accumbens shell (AcbSh). On the other hand, immunoneutralization of endogenous CART with CART antibodies injected directly in the pVTA or PVT reduced the lever press activity as well as DA and DOPAC efflux in the AcbSh. Injection of CART (1-39) in pVTA or PVT was ineffective. We suggest that CART cells in the LH-MFB area send afferents to (a) pVTA and influence dopaminergic neurons projecting to AcbSh and (b) PVT, from where the secondary neurons may feed into the AcbSh. Excitation of the CARTergic pathway to the pVTA as well as the PVT seems to promote DA release in the AcbSh and contribute to the generation of reward.
Assuntos
Dopamina/metabolismo , Rede Nervosa/metabolismo , Proteínas do Tecido Nervoso/administração & dosagem , Proteínas do Tecido Nervoso/metabolismo , Núcleo Accumbens/metabolismo , Recompensa , Animais , Eletrodos Implantados , Masculino , Microdiálise/métodos , Rede Nervosa/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Ratos , Ratos WistarRESUMO
The aim of the study is to understand the rationale behind the application of deep brain stimulation (DBS) in the treatment of depression. Male Wistar rats, rendered depressive with chronic unpredictable mild stress (CUMS) were implanted with electrode in the lateral hypothalamus-medial forebrain bundle (LH-MFB) and subjected to deep brain stimulation (DBS) for 4 h each day for 14 days. DBS rats, as well as controls, were screened for a range of parameters indicative of depressive state. Symptomatic features noticed in CUMS rats like the memory deficit, anhedonia, reduction in body weight and 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) levels in mPFC and elevated plasma corticosterone were reversed in rats subjected to DBS. DBS arrested CUMS induced degeneration of 5-HT cells in interfascicular region of dorsal raphe nucleus (DRif) and fibers in LH-MFB and induced dendritic proliferation in mPFC neurons. MFB is known to serve as a major conduit for the DRif-mPFC serotoninergic pathway. While the density of serotonin fibers in the LH-MFB circuit was reduced in CUMS, it was upregulated in DBS-treated rats. Furthermore, microinjection of 5-HT1A receptor antagonist, WAY100635 into mPFC countered the positive effects of DBS like the antidepressant and memory-enhancing action. In this background, we suggest that DBS at LH-MFB may exercise positive effect in depressive rats via upregulation of the serotoninergic system. While these data drawn from the experiments on rat provide meaningful clues, we suggest that further studies aimed at understanding the usefulness of DBS at LH-MFB in humans may be rewarding.
Assuntos
Estimulação Encefálica Profunda , Depressão , Feixe Prosencefálico Mediano , Ratos Wistar , Serotonina , Animais , Estimulação Encefálica Profunda/métodos , Masculino , Serotonina/metabolismo , Depressão/terapia , Depressão/metabolismo , Região Hipotalâmica Lateral/metabolismo , Estresse Psicológico/metabolismo , Estresse Psicológico/terapia , Disfunção Cognitiva/terapia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/etiologia , Modelos Animais de Doenças , Ratos , Corticosterona/sangue , Ácido Hidroxi-Indolacético/metabolismo , Córtex Pré-Frontal/metabolismoRESUMO
Neuropeptide S (NPS) is a 20 amino acids-containing neuroactive molecule discovered by the reverse pharmacology method. NPS is detected in specific brain regions like the brainstem, amygdala, and hypothalamus, while its receptor (NPSR) is ubiquitously expressed in the central nervous system (CNS). Besides CNS, NPS and NPSR are also expressed in the peripheral nervous system. NPSR is a G-protein coupled receptor that primarily uses Gq and Gs signaling pathways to mediate the actions of NPS. In animal models of Parkinsonism and Alzheimer's disease, NPS exerts neuroprotective effects. NPS suppresses oxidative stress, anxiety, food intake, and pain, and promotes arousal. NPSR facilitates reward, reinforcement, and addiction-related behaviors. Genetic variation and single nucleotide polymorphism in NPSR are associated with depression, schizophrenia, rheumatoid arthritis, and asthma. NPS interacts with several neurotransmitters including glutamate, noradrenaline, serotonin, corticotropin-releasing factor, and gamma-aminobutyric acid. It also modulates the immune system via augmenting pro-inflammatory cytokines and plays an important role in the pathogenesis of rheumatoid arthritis and asthma. In the present review, we discussed the distribution profile of NPS and NPSR, signaling pathways, and their importance in the pathophysiology of various neurological disorders. We have also proposed the areas where further investigations on the NPS system are warranted.
Assuntos
Artrite Reumatoide , Asma , Doenças do Sistema Nervoso , Neuropeptídeos , Animais , Ansiedade , Asma/metabolismo , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/genética , Neuropeptídeos/metabolismo , Receptores de Neuropeptídeos/metabolismo , HumanosRESUMO
The 5-HT3 receptor and indoleamine 2,3-dioxygenase 1 (IDO1) enzyme play a crucial role in the pathogenesis of depression as their activation reduces serotonin contents in the brain. Since molecular docking analysis revealed lycopene as a potent 5-HT3 receptor antagonist and IDO1 inhibitor, we hypothesized that lycopene might disrupt the interplay between the 5-HT3 receptor and IDO1 to mitigate depression. In mice, the depression-like phenotypes were induced by inoculating Bacillus Calmette-Guerin (BCG). Lycopene (intraperitoneal; i.p.) was administered alone or in combination with 5-HT3 receptor antagonist ondansetron (i.p.) or IDO1 inhibitor minocycline (i.p.), and the behavioral screening was performed by the sucrose preference test, open field test, tail suspension test, and splash test which are based on the different principles. Further, the brains were subjected to the biochemical analysis of serotonin and its precursor tryptophan by the HPLC. The results showed depression-like behavior in BCG-inoculated mice, which was reversed by lycopene administration. Moreover, prior treatment with ondansetron or minocycline potentiated the antidepressant action of lycopene. Minocycline pretreatment also enhanced the antidepressant effect of ondansetron indicating the regulation of IDO1 activity by 5-HT3 receptor-triggered signaling. Biochemical analysis of brain samples revealed a drastic reduction in the levels of tryptophan and serotonin in depressed animals, which were restored following treatment with lycopene and its combination with ondansetron or minocycline. Taken together, the data from molecular docking, behavioral experiments, and biochemical estimation suggest that lycopene might block the 5-HT3 receptor and consequently inhibit the activity of IDO1 to ameliorate BCG-induced depression in mice.
Assuntos
Encéfalo , Depressão , Indolamina-Pirrol 2,3,-Dioxigenase , Licopeno , Receptores 5-HT3 de Serotonina , Animais , Licopeno/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Camundongos , Depressão/tratamento farmacológico , Depressão/metabolismo , Masculino , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Receptores 5-HT3 de Serotonina/metabolismo , Fenótipo , Simulação de Acoplamento Molecular , Serotonina/metabolismo , Vacina BCG/farmacologia , Ondansetron/farmacologia , Comportamento Animal/efeitos dos fármacos , Antagonistas do Receptor 5-HT3 de Serotonina/farmacologia , Antidepressivos/farmacologia , Minociclina/farmacologiaRESUMO
The inability to extinguish learned fear is a hallmark of trauma- and stress-related disorders. A form of inhibitory learning called fear extinction is an effective way to treat these disorders. However, the neurobiology of fear extinction has not been clarified. The involvement of a dopaminergic pathway from the ventral tegmental area (VTA) to the nucleus accumbens shell (AcbSh) in fear extinction has been suggested. Several neuropeptide systems, including neuropeptide S (NPS), modulate the activity of VTA dopaminergic neurons. Herein, we investigated the role of NPS in modulating the VTA-AcbSh circuit in fear extinction. While the NPS-containing neurons of the pericoerulear (periLC) area project to the VTA, the recipient cells are equipped with NPS receptors. Using a Pavlovian fear conditioning procedure, we tested the effect of NPS on fear extinction in male Wistar rats. Intra-VTA administration of NPS prior to fear extinction training facilitated the fear extinction learning and memory, however, NPS receptors antagonist had the opposite effect. Fear extinction training increased the dopamine efflux and cFOS immunoreactivity in the AcbSh area of NPS-treated rats compared with the vehicle-injected controls. We suggest that the NPS neurons of the periLC project to the VTA and might facilitate fear extinction by enhancing the activity of mesolimbic dopaminergic circuit.
Assuntos
Dopamina , Neuropeptídeos , Animais , Masculino , Ratos , Dopamina/metabolismo , Neurônios Dopaminérgicos , Extinção Psicológica , Medo , Neuropeptídeos/metabolismo , Núcleo Accumbens , Ratos Wistar , Área Tegmentar VentralRESUMO
Strategies drawn at understanding the functional attributes of specific neural circuits often necessitate electrical stimulation and pharmacological manipulation at the same anatomical site. We describe a simple, inexpensive and reliable method to fabricate a bipolar electrode-cannula assembly for delivery of electric pulses and administration of neuroactive agents at the same site in the rat brain. The assembly consisting of a guide cannula, dummy cannula, internal cannula and bipolar electrode was fabricated using syringe needles, wires and simple electronic components. To test the usefulness of the device, it was implanted on the skull of a rat specifically targeting the posterior ventral tegmental area (pVTA). The rat was conditioned to press the lever in intracranial self-stimulation (ICSS) protocol in an operant chamber. The number of lever presses in a 30 min task was monitored. Intra-pVTA administration with bicuculline (GABAA receptor antagonist) increased the lever press activity, while muscimol (GABAA receptor agonist) had opposite effect. The results confirm that the group of neurons responding to the electrical stimulation probably receive GABAergic inputs. The device is light in weight, costs less than a dollar and can be fabricated from readily available components. It can serve a useful purpose in electrically stimulating any given target in the brain - before, during or after pharmacological manipulation at the same locus and may find application in neuropharmacological and neurobehavioral studies.
Assuntos
Cânula , Receptores de GABA-A , Animais , Ratos , Autoestimulação/fisiologia , Estimulação Elétrica , Agonistas de Receptores de GABA-A , Encéfalo , EletrodosRESUMO
Coincident excitation via different sensory modalities encoding objects of positive salience is known to facilitate learning and memory. With a view to dissect the contribution of visual cues in inducing adaptive neural changes, we monitored the lever press activity of a rat conditioned to self-administer sweet food pellets in the presence/absence of light cues. Application of light cues facilitated learning and consolidation of long-term memory. The superior colliculus (SC) of rats trained on light cue showed increased neuronal activity, dendritic branching, and brain-derived neurotrophic factor (BDNF) protein and mRNA expression. Concomitantly, the hippocampus showed augmented neurogenesis as well as BDNF protein and mRNA expression. While intra-SC administration of U0126 (inhibitor of ERK 1/2 and long-term memory) impaired memory formation, lidocaine (local anaesthetic) hindered memory recall. The light cue-dependent sweet food pellet self-administration was coupled with increased efflux of dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) in the nucleus accumbens shell (AcbSh). In conditioned rats, pharmacological inhibition of glutamatergic signalling in dentate gyrus (DG) reduced lever press activity, as well as DA and DOPAC secretion in the AcbSh. We suggest that the neuroplastic changes in the SC and hippocampus might represent memory engrams sculpted by visual cues encoding reward information.
Assuntos
Sinais (Psicologia) , Colículos Superiores , Animais , Hipocampo/metabolismo , Núcleo Accumbens/metabolismo , Ratos , RecompensaRESUMO
Reward induces activity-dependant gene expression and synaptic plasticity-related changes. Lysine-specific histone demethylase 1 (LSD1), a key enzyme driving histone modifications, regulates transcription in neural circuits of memory and emotional behavior. Herein, we focus on the role of LSD1 in modulating the expression of brain derived neurotrophic factor (BDNF), the master regulator of synaptic plasticity, in the lateral hypothalamus-medial forebrain bundle (LH-MFB) circuit during positive reinforcement. Rats, trained for intracranial self-stimulation (ICSS) via an electrode-cannula assembly in the LH-MFB area, were assayed for lever press activity, epigenetic parameters and dendritic sprouting. LSD1 expression and markers of synaptic plasticity like BDNF and dendritic arborization in the LH, showed distinct increase in conditioned animals. H3K4me2 levels at Bdnf IV and Bdnf IX promoters were increased in ICSS-conditioned rats, but H3K9me2 was decreased. While intra LH-MFB treatment with pan Lsd1 siRNA inhibited lever press activity, analyses of LH tissue showed reduction in BDNF expression and levels of H3K4me2 and H3K9me2. However, co-administration of BDNF peptide restored lever press activity mitigated by Lsd1 siRNA. BDNF expression in LH, driven by LSD1 via histone demethylation, may play an important role in reshaping the reward pathway and hold the key to decode the molecular basis of addiction.
Assuntos
Região Hipotalâmica Lateral , Feixe Prosencefálico Mediano , Animais , Fator Neurotrófico Derivado do Encéfalo , Histona Desmetilases , RNA Interferente Pequeno , Ratos , Ratos Wistar , RecompensaRESUMO
BACKGROUND: Anger is one of the primary emotions that profoundly impacts our daily life. Although the neural basis of anger needs to be explored on high priority, the field has not sufficiently advanced, perhaps due to the lack of a suitable animal model. NEW METHOD: We fabricated arenas in which the hungry rat can see and smell food but can not consume it. These animals seemed hyperactive and we monitored the (a) motor activity to access food, (b) biting behaviour, (c) blood pressure, heart rate and nor-epinephrine (NE) in plasma, (d) 5-HT and its metabolite in CSF, (e) effect of diazepam, 5-HT agonist, and antagonist on the behaviour, and (f) expression of immediate early gene in discrete areas of the brain. RESULTS: The fasted animal frantically tries to acquire food. It engages in intense biting of the separator plate; the behaviour was considered as an expression of anger-like emotion. These behaviours were attenuated following pre-treatment with diazepam, fluoxetine (both ip) or 5-HT1A receptor agonist (icv), but potentiated by 5-HT1A antagonist (icv). Concomitantly, an increase in the blood pressure, heart rate and NE in plasma, but a decrease in 5-HT and 5-HIAA in the CSF was noted. The animals showed activation of neuronal c-Fos in different brain areas compared to fasted or refed controls. COMPARISON WITH EXISTING METHODS: A novel animal paradigm for assessment of anger. CONCLUSIONS: The protocol enables us to generate and evaluate anger-like responses in rat and permits insights into the neurological basis of anger.