Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 2288, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32042092

RESUMO

Double and triple ionisation spectra of the reactive molecule isocyanic acid (HNCO) have been measured using multi-electron and ion coincidence techniques combined with synchrotron radiation and compared with high-level theoretical calculations. Vertical double ionisation at an energy of 32.8 ± 0.3 eV forms the 3A" ground state in which the HNCO2+ ion is long lived. The vertical triple ionisation energy is determined as 65 ± 1 eV. The core-valence double ionisation spectra resemble the valence photoelectron spectrum in form, and their main features can be understood on the basis of a simple and rather widely applicable Coulomb model based on the characteristics of the molecular orbitals from which electrons are removed. Characteristics of the most important dissociation channels are examined and discussed.

2.
Cell Biol Toxicol ; 22(2): 127-36, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16525752

RESUMO

Gliotoxin is a fungal second metabolite produced by diverse species that can be found in compost, stored crops, moist animal feed and sawdust. The role of glutathione in gliotoxin-induced toxicity was studied in order to elucidate the toxic mechanisms leading to neurite degeneration and cell death in differentiated human neuroblastoma (SH-SY5Y) cells. After 72 h of exposure to gliotoxin, moderate cytotoxicity was induced at 0.1 micromol/L, which was more severe at higher concentrations. A reduction in the number of neurites per cell was also observed. By decreasing the level of intracellular glutathione with L: -buthionine-sulfoxamine (BSO) a specific inhibitor of glutathione synthesis, the cytotoxic effect of gliotoxin was significantly attenuated. The gliotoxin-induced cytotoxicity was also slightly reduced by the antioxidant vitamin C. However, the neurite degenerative effect was not altered by BSO, or by vitamin C. A concentration-dependent increase in the ratio between oxidized and reduced forms of glutathione, as well as the total intracellular glutathione levels, was noted after exposure to gliotoxin. The increase of glutathione was also reflected in western blot analyses showing a tendency for the regulatory subunit of gamma-glutamylcysteine synthetase to be upregulated. In addition, the activity of glutathione reductase was slightly increased in gliotoxin-exposed cells. These results indicate that glutathione promotes gliotoxin-induced cytotoxicity, probably by reducing the ETP (epipolythiodioxopiperazine) disulfide bridge to the dithiol form.


Assuntos
Gliotoxina/toxicidade , Glutationa Redutase/metabolismo , Glutationa/farmacologia , Neuroblastoma/química , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Neuritos/efeitos dos fármacos , Neuroblastoma/enzimologia
3.
Biochem Biophys Res Commun ; 345(3): 1068-74, 2006 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-16712786

RESUMO

In this study, a significant increase by 50% in intracellular free calcium concentration ([Ca(2+)](i)) was observed in differentiated human neuroblastoma (SH-SY5Y) cells after exposure to 0.25microM of the fungal metabolite gliotoxin for 72h. Further, the involvement of caspases and calpains was demonstrated to underlie the gliotoxin-induced cytotoxic and neurite degenerative effects. The caspase inhibitor Z-VAD-fmk almost completely reduced the neurite degeneration from 40% degeneration of neurites to 5% as compared to control. Inhibition of calpains with calpeptin significantly attenuated gliotoxin-induced cytotoxicity, determined as reduction in total cellular protein content, from 43% to 14% as compared to control cells. Western blot analyses of alphaII-spectrin breakdown fragments confirmed activity of the proteases, and that alphaII-spectrin was cleaved by caspases in gliotoxin-exposed cells. These results show that calpains and caspases have a role in the toxicity of gliotoxin in differentiated SH-SY5Y cells and that the process may be Ca(2+)-mediated.


Assuntos
Calpaína/metabolismo , Caspases/metabolismo , Gliotoxina/farmacologia , Imunossupressores/farmacologia , Neuritos/metabolismo , Neuroblastoma/metabolismo , Clorometilcetonas de Aminoácidos/farmacologia , Cálcio/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Humanos , Espectrina/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa