Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Appl ; 32(1): e02471, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34626517

RESUMO

Wilderness areas are not immune to changes in land use, land cover, and/or climate. Future changes will intensify the balancing act of maintaining ecological conditions and untrammeled character within wilderness areas. We assessed the quantitative and spatial changes in land use, land cover, and climate predicted to occur in and around wilderness areas by (1) quantifying projected changes in land use and land cover around wilderness areas; (2) evaluating if public lands surrounding wilderness areas can buffer future land-use change; (3) quantifying future climate conditions in and around wilderness areas; and (4) identifying wilderness areas expected to experience the most change in land use, land cover, and climate. We used projections of land use (four variables), land cover (five variables), and climate (nine variables) to assess changes for 707 wilderness areas in the contiguous United States by mid-21st century under two scenarios (medium-low and high). We ranked all wilderness areas relative to each other by summing and ranking decile values for each land use, land cover, and climate variable and calculating a multivariate metric of future change. All wilderness areas were projected to experience some level of change by mid-century. The greatest land-use changes were associated with increases in agriculture, clear cutting, and developed land, while the greatest land cover changes were observed for grassland, forest, and shrubland. In 51.6% and 73.8% of wilderness areas, core area of natural vegetation surrounding wilderness was projected to decrease for the medium-low and high scenarios, respectfully. Presence of public land did not mitigate the influence of land-use change around wilderness areas. Geographically, projected changes occurred throughout the contiguous U.S., with areas in the northeast and upper Midwest projected to have the greatest land-use and climate change and the southwestern U.S. projected to undergo the greatest land cover and climate change. Our results provide insights into potential future threats to wilderness areas and the challenges associated with wilderness stewardship and climate adaptation. Despite the high degree of protection and remoteness of wilderness areas, effective management and preservation of these lands must consider future changes in land use, land cover, and climate.


Assuntos
Mudança Climática , Meio Selvagem , Agricultura , Conservação dos Recursos Naturais/métodos , Ecossistema , Florestas , Sudoeste dos Estados Unidos
2.
Ecol Appl ; 25(1): 39-51, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26255356

RESUMO

In the face of global environmental change, the importance of protected areas in biological management and conservation is expected to grow. Birds have played an important role as biological indicators of the effectiveness of protected areas, but with little consideration given to where species occur outside the breeding season. We estimated weekly probability of occurrence for 308 bird species throughout the year within protected areas in the western contiguous USA using eBird occurrence data for the combined period 2004 to 2011. We classified species based on their annual patterns of occurrence on lands having intermediate conservation mandates (GAP status 2 and 3) administered by the Bureau of Land Management (BLM) and the United States Forest Service (USFS). We identified species having consistent annual association with one agency, and species whose associations across the annual cycle switched between agencies. BLM and USFS GAP status 2 and 3 lands contained low to moderate proportions of species occurrences, with proportions highest for species that occurred year-round or only during the summer. We identified two groups of species whose annual movements resulted in changes in stewardship responsibilities: (1) year-round species that occurred on USFS lands during the breeding season and BLM lands during the nonbreeding season; and (2) summer species that occurred on USFS lands during the breeding season and BLM lands during spring and autumn migration. Species that switched agencies had broad distributions, bred on high-elevation USFS lands, were not more likely to be identified as species of special management concern, and migrated short (year-round species) to long distances (summer species). Our findings suggest cooperative efforts that address the requirements of short-distance migratory species on GAP status 2 lands (n = 20 species) and GAP status 3 lands (n = 24) and long-distance migratory species on GAP status 2 lands (n = 9) would likely benefit their populations. Such efforts may prove especially relevant for species whose seasonal movements result in associations with different environments containing contrasting global change processes and management mandates.


Assuntos
Aves/fisiologia , Conservação dos Recursos Naturais , United States Government Agencies , Migração Animal , Animais , Estações do Ano , Estados Unidos
3.
PLoS One ; 16(3): e0248763, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33735234

RESUMO

Arctic and boreal environments are changing rapidly, which could decouple behavioral and demographic traits of animals from the resource pulses that have shaped their evolution. Dall's sheep (Ovis dalli dalli) in northwestern regions of the USA and Canada, survive long, severe winters and reproduce during summers with short growing seasons. We sought to understand the vulnerability of Dall's sheep to a changing climate in Lake Clark National Park and Preserve, Alaska, USA. We developed ecological hypotheses about nutritional needs, security from predators, energetic costs of movement, and thermal shelter to describe habitat selection during winter, spring, and summer and evaluated habitat and climate variables that reflected these hypotheses. We used the synoptic model of animal space use to estimate parameters of habitat selection by individual females and calculated likelihoods for ecological hypotheses within seasonal models. Our results showed that seasonal habitat selection was influenced by multiple ecological requirements simultaneously. Across all seasons, sheep selected steep rugged areas near escape terrain for security from predators. During winter and spring, sheep selected habitats with increased forage and security, moderated thermal conditions, and lowered energetic costs of movement. During summer, nutritional needs and security influenced habitat selection. Climate directly influenced habitat selection during the spring lambing period when sheep selected areas with lower snow depths, less snow cover, and higher air temperatures. Indirectly, climate is linked to the expansion of shrub/scrub vegetation, which was significantly avoided in all seasons. Dall's sheep balance resource selection to meet multiple needs across seasons and such behaviors are finely tuned to patterns of phenology and climate. Direct and indirect effects of a changing climate may reduce their ability to balance their needs and lead to continued population declines. However, several management approaches could promote resiliency of alpine habitats that support Dall's sheep populations.


Assuntos
Clima , Ecossistema , Ovinos/fisiologia , Alaska , Animais , Feminino , Geografia , Parques Recreativos , Estações do Ano
4.
PLoS One ; 15(9): e0239184, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32997702

RESUMO

Setting land aside has long been a primary approach for protecting biodiversity; however, the efficacy of this approach has been questioned. We examined whether protecting lands positively influences bird species in the U.S., and thus overall biodiversity. We used the North American Breeding Bird Survey and Protected Areas Database of the U.S. to assess effects of protected and multiple-use lands on the prevalence and long-term population trends of imperiled and non-imperiled bird species. We evaluated whether both presence and proportional area of protected and multiple-use lands surrounding survey routes affected prevalence and population trends for imperiled and non-imperiled species. Regarding presence of these lands surrounding these survey routes, our results suggest that imperiled and non-imperiled species are using the combination of protected and multiple-use lands more than undesignated lands. We found no difference between protected and multiple-use lands. Mean population trends were negative for imperiled species in all land categories and did not differ between the land categories. Regarding proportion of protected lands surrounding the survey routes, we found that neither the prevalence nor population trends of imperiled or non-imperiled species was positively associated with any land category. We conclude that, although many species (in both groups) tend to be using these protected and multiple-use lands more frequently than undesignated lands, this protection does not appear to improve population trends. Our results may be influenced by external pressures (e.g., habitat fragmentation), the size of protected lands, the high mobility of birds that allows them to use a combination of all land categories, and management strategies that result in similar habitat between protected and multiple-use lands, or our approach to detect limited relationships. Overall, our results suggest that the combination of protected and multiple-use lands is insufficient, alone, to prevent declines in avian biodiversity at a national scale.


Assuntos
Biodiversidade , Aves , Conservação dos Recursos Naturais , Animais , Estados Unidos
5.
PLoS One ; 14(7): e0219128, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31310634

RESUMO

Forested lands in the western USA have undergone changes in management and condition that are resulting in a shift towards climax vegetation. These changes can influence the quality and quantity of forage for herbivores that rely on early-seral plants. To evaluate how management of forested landscapes might affect nutrition for Shiras moose (A. a. shirasi) at large spatial scales, we focused on shrubs and evaluated summer diet composition, forage availability, and forage quality across 21 population management units encompassing >36,000 km2 in northern Idaho, USA. We identified 17 shrub species in the diets of moose, 11 of which comprised the bulk of the diets. These forage shrubs varied markedly in both energy (mean digestible energy for leaves ranged from 9.62 to 12.89 kJ/g) and protein (mean digestible protein for leaves ranged from 1.73 to 7.90%). By adapting established field sampling methods and integrating recent advances in remote sensing analyses in a modeling framework, we predicted approximations of current and past (i.e., 1984) quantities of forage shrubs across northern Idaho. We also created a qualitative index of population trend for moose across population management units using harvest data. Predicted quantities of forage shrubs varied widely across the study area with generally higher values at more northern latitudes. The quantity of forage shrubs was estimated to have declined over the past 30 years in about half of the population management units, with the greatest declines predicted for high-energy forage species. The population trend index was correlated with the percent change in availability of moderate-energy forage shrubs, indicating that availability of forage shrubs and change in availability over time might be affecting population dynamics for moose in northern Idaho. Our study highlights the importance of assessing how changes in forest management across broad spatiotemporal extents could affect wildlife and their habitats.


Assuntos
Cervos/fisiologia , Dieta , Florestas , Fenômenos Fisiológicos da Nutrição Animal , Animais , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/tendências , Ecossistema , Feminino , Herbivoria , Idaho , Masculino , Plantas Comestíveis , Dinâmica Populacional/tendências , Estações do Ano , Análise Espaço-Temporal
6.
PLoS One ; 8(1): e54689, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23372754

RESUMO

If conservation of biodiversity is the goal, then the protected areas network of the continental US may be one of our best conservation tools for safeguarding ecological systems (i.e., vegetation communities). We evaluated representation of ecological systems in the current protected areas network and found insufficient representation at three vegetation community levels within lower elevations and moderate to high productivity soils. We used national-level data for ecological systems and a protected areas database to explore alternative ways we might be able to increase representation of ecological systems within the continental US. By following one or more of these alternatives it may be possible to increase the representation of ecological systems in the protected areas network both quantitatively (from 10% up to 39%) and geographically and come closer to meeting the suggested Convention on Biological Diversity target of 17% for terrestrial areas. We used the Landscape Conservation Cooperative framework for regional analysis and found that increased conservation on some private and public lands may be important to the conservation of ecological systems in Western US, while increased public-private partnerships may be important in the conservation of ecological systems in Eastern US. We have not assessed the pros and cons of following the national or regional alternatives, but rather present them as possibilities that may be considered and evaluated as decisions are made to increase the representation of ecological systems in the protected areas network across their range of ecological, geographical, and geophysical occurrence in the continental US into the future.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biodiversidade , Meio Ambiente , Geografia , Humanos , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa