Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Prep Biochem Biotechnol ; 54(4): 455-469, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37587838

RESUMO

Strain improvement via chemical mutagen could impart traits with better enzyme production or improved characteristics. The present study sought to investigate the physicochemical properties of pullulanase produced from the wild Bacillus sp and the mutant. The pullulanases produced from the wild and the mutant Bacillus sp. (obtained via induction with ethyl methyl sulfonate) were purified in a-three step purification procedure and were also characterized. The wild and mutant pullulanases, which have molecular masses of 40 and 43.23 kDa, showed yields of 2.3% with 6.0-fold purification and 2.0% with 5.0-fold purification, respectively, and were most active at 50 and 40 °C and pH 7 and 8, respectively. The highest stability of the wild and mutant was between 40 and 50 °C after 1 h, although the mutant retained greater enzymatic activity between pH 6 and 9 than the wild. The mutant had a decreased Km of 0.03 mM as opposed to the wild type of 1.6 mM. In comparison to the wild, the mutant demonstrated a better capacity for tolerating metal ions and chelating agents. These exceptional characteristics of the mutant pullulanase may have been caused by a single mutation, which could improve its utility in industrial and commercial applications.


Assuntos
Bacillus , Bacillus/metabolismo , Glicosídeo Hidrolases/metabolismo , Concentração de Íons de Hidrogênio , Estabilidade Enzimática , Temperatura
2.
Biotechnol Lett ; 42(12): 2673-2683, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32740782

RESUMO

OBJECTIVES: The bioaccumulation of keratinous wastes from poultry and dairy industries poses a danger of instability to the biosphere due to resistance to common proteolysis and as such, microbial- and enzyme-mediated biodegradation are discussed. RESULTS: In submerged fermentation medium, Proteus vulgaris EMB-14 utilized and efficiently degraded feather, fur and scales by secreting exogenous keratinase. The keratinase was purified 14-fold as a monomeric 49 kDa by DEAE-Sephadex A-50 anion exchange and Sephadex G-100 size-exclusion chromatography. It exhibited optimum activity at pH 9.0 and 60 °C and was alkaline thermostable (pH 7.0-11.0), retaining 87% of initial activity after 1 h pre-incubation at 60 °C. The Km and Vmax of the keratinase with keratin azure were respectively 0.283 mg/mL and 0.241 U/mL/min. Activity of P. vulgaris keratinase was stimulated by Ca2+, Mg2+, Zn2+, Na+ and maintained in the presence of some denaturing agents, except ß-mercaptoethanol while Cu2+ and Pb2+ showed competitive and non-competitive inhibition with Ki 6.5 mM and 17.5 mM, respectively. CONCLUSION: This purified P. vulgaris keratinase could be surveyed for the biotechnological transformation of bioorganic keratinous wastes into valuable products such as soluble peptides, cosmetics and biodegradable thermoplastics.


Assuntos
Peptídeo Hidrolases/isolamento & purificação , Proteus vulgaris/química , Tensoativos/isolamento & purificação , Animais , Biotecnologia , Proliferação de Células/efeitos dos fármacos , Plumas/química , Concentração de Íons de Hidrogênio , Queratinas/química , Peptídeo Hidrolases/química , Proteus vulgaris/enzimologia , Proteus vulgaris/crescimento & desenvolvimento , Especificidade por Substrato , Tensoativos/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa