Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biopolymers ; 115(3): e23579, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38578129

RESUMO

In this study, a new biomaterial with polyvinyl alcohol (PVA)/sodium caseinate (SodCa)/reduced graphene oxide (rGO) structure was developed. Antibacterial effective nanofibers were successfully produced by electrospinning method from 1%, 3%, 5%, and 7% rGO added PVA/SodCa (60:40, w:w) solution mixtures prepared for use as modern wound dressings. To create a usage area, especially in exuding wounds, hydrophilic PVA/SodCa/rGO electrospun mats were cross-linked by dipping them in a glutaraldehyde (GLA) bath. The surface micrographs of all nanofibers were homogeneous and smooth. rGO-doped biomaterials were obtained as thin nanofibers in the range of 301-348 nm. Nanofibers, which were completely soluble in water, after cross-linking preserved their existence in the range of 87%-81% at the end of the 24th hour in distilled water. It was reported that these biomaterials that persist in an aqueous environment show swelling behavior in the range of 275%-608%. The porosity of uncross-linked pure PVA/SodCa nanofibers increased by 46.75% after cross-linking. Moreover, the tensile strength of cross-linked PVA/SodCa electrospun mats increased in the presence of rGO. Provided that wound dressing is done every 24 h with 3% rGO-doped PVA/SodCa nanofiber and provided that wound dressing is done every 48 h with 5% rGO-doped PVA/SodCa nanofiber showed antibacterial activity against S. aureus as 99.38% and 99.55%, respectively.


Assuntos
Antibacterianos , Bandagens , Caseínas , Grafite , Nanofibras , Álcool de Polivinil , Álcool de Polivinil/química , Grafite/química , Antibacterianos/farmacologia , Antibacterianos/química , Nanofibras/química , Caseínas/química , Resistência à Tração , Staphylococcus aureus/efeitos dos fármacos , Reagentes de Ligações Cruzadas/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia
2.
ACS Omega ; 8(25): 22762-22773, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37396289

RESUMO

To solve the problem of increasing electromagnetic pollution, it is crucial to develop electromagnetic interference (EMI) shielding materials. Using lightweight, inexpensive polymeric composites instead of currently used metal shielding materials is promising. Therefore, bio-based polyamide 11/poly(lactic acid) composites with various carbon fiber (CF) amounts were prepared using commercial extrusion and injection/compression molding methods. The prepared composites' morphological, thermal, electrical conductivity, dielectric, and EMI shielding characteristics were investigated. The strong adhesion between the matrix and CF is confirmed by scanning electron microscopy. The addition of CF led to an increase in thermal stability. As CFs formed a conductive network in the matrix, direct current (DC) and alternative current (AC) conductivities of the matrix increased. Dielectric spectroscopy measurements showed an increase in the dielectric permittivity/energy-storage capability of the composites. Thus, the EMI shielding effectiveness (EMI SE) has also increased with the inclusion of CF. The EMI SE of the matrix increased to 15, 23, and 28 dB, respectively, with the addition of 10-20-30 wt % CF at 10 GHz, and these values are comparable or higher than other CF-reinforced polymer composites. Further analysis revealed that shielding was primarily accomplished by the reflection mechanism similar to the literature data. As a result, an EMI shielding material has been developed that can be used in commercially practical applications in the X-band region.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa