Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(21): 10264-10269, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31068475

RESUMO

Scalable nanomanufacturing enables the commercialization of nanotechnology, particularly in applications such as nanophotonics, silicon photonics, photovoltaics, and biosensing. Nanoimprinting lithography (NIL) was the first scalable process to introduce 3D nanopatterning of polymeric films. Despite efforts to extend NIL's library of patternable media, imprinting of inorganic semiconductors has been plagued by concomitant generation of crystallography defects during imprinting. Here, we use an electrochemical nanoimprinting process-called Mac-Imprint-for directly patterning electronic-grade silicon with 3D microscale features. It is shown that stamps made of mesoporous metal catalysts allow for imprinting electronic-grade silicon without the concomitant generation of porous silicon damage while introducing mesoscale roughness. Unlike most NIL processes, Mac-Imprint does not rely on plastic deformation, and thus, it allows for replicating hard and brittle materials, such as silicon, from a reusable polymeric mold, which can be manufactured by almost any existing microfabrication technique.

2.
Nanotechnology ; 31(40): 405706, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-32541102

RESUMO

This work studies the optical reflectance of nanoporous gold (NPG) thin films of varying pore volume fraction (PVF) synthesized by chemical dealloying of Ag-Au alloy precursors. The fabricated samples are characterized by scanning electron microscopy, and spectral hemispherical reflectance is measured with an integrating sphere. The effective isotropic optical constants of NPG with varying PVF are modeled for the wavelength range from 0.4 to 1.6 µm using the Bruggeman effective medium theory. As the thickness of the NPG thin films is more than ten times larger than the effective penetration depth, the spectral reflectance is simply modeled with the Fresnel coefficients at the interface of air and semi-infinite NPG with different incident angles and polarizations. Consistent with the modeling results, the optical measurement data shows that the spectral normal reflectance of NPG significantly decreases with larger PVF values in the near-infrared regime. On the other hand, the reflectance increases greatly only within visible range at larger oblique angles for transverse-electric polarized waves compared to transverse-magnetic waves. Moreover, the NPG samples demonstrate good thermal stability from room temperature up to 100 °C with little changes in the temperature-dependent spectral hemispherical reflectance.

4.
J Vis Exp ; (180)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35225282

RESUMO

Metal-assisted electrochemical imprinting (Mac-Imprint) is a combination of metal-assisted chemical etching (MACE) and nanoimprint lithography that is capable of direct patterning 3D micro- and nanoscale features in monocrystalline group IV (e.g., Si) and III-V (e.g., GaAs) semiconductors without the need of sacrificial templates and lithographical steps. During this process, a reusable stamp coated with a noble metal catalyst is brought in contact with a Si wafer in the presence of a hydrofluoric acid (HF) and hydrogen peroxide (H2O2) mixture, which leads to the selective etching of Si at the metal-semiconductor contact interface. In this protocol, we discuss the stamp and substrate preparation methods applied in two Mac-Imprint configurations: (1) Porous Si Mac-Imprint with a solid catalyst; and (2) Solid Si Mac-Imprint with a porous catalyst. This process is high throughput and is capable of centimeter-scale parallel patterning with sub-20 nm resolution. It also provides low defect density and large area patterning in a single operation and bypasses the need for dry etching such as deep reactive ion etching (DRIE).

5.
Nano Lett ; 10(5): 1582-8, 2010 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-20423044

RESUMO

Semiconductor nanowires have potential applications in photovoltaics, batteries, and thermoelectrics. We report a top-down fabrication method that involves the combination of superionic-solid-state-stamping (S4) patterning with metal-assisted-chemical-etching (MacEtch), to produce silicon nanowire arrays with defined geometry and optical properties in a manufacturable fashion. Strong light emission in the entire visible and near infrared wavelength range at room temperature, tunable by etching condition, attributed to surface features, and enhanced by silver surface plasmon, is demonstrated.


Assuntos
Cristalização/métodos , Iluminação/instrumentação , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/instrumentação , Silício/química , Prata/química , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Semicondutores , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa