RESUMO
Opioids such as morphine-acting at the mu opioid receptor-are the mainstay for treatment of moderate to severe pain and have good efficacy in these indications. However, these drugs produce a plethora of unwanted adverse effects including respiratory depression, constipation, immune suppression and with prolonged treatment, tolerance, dependence and abuse liability. Studies in ß-arrestin 2 gene knockout (ßarr2(-/-)) animals indicate that morphine analgesia is potentiated while side effects are reduced, suggesting that drugs biased away from arrestin may manifest with a reduced-side-effect profile. However, there is controversy in this area with improvement of morphine-induced constipation and reduced respiratory effects in ßarr2(-/-) mice. Moreover, studies performed with mice genetically engineered with G-protein-biased mu receptors suggested increased sensitivity of these animals to both analgesic actions and side effects of opioid drugs. Several new molecules have been identified as mu receptor G-protein-biased agonists, including oliceridine (TRV130), PZM21 and SR-17018. These compounds have provided preclinical data with apparent support for bias toward G proteins and the genetic premise of effective and safer analgesics. There are clinical data for oliceridine that have been very recently approved for short term intravenous use in hospitals and other controlled settings. While these data are compelling and provide a potential new pathway-based target for drug discovery, a simpler explanation for the behavior of these biased agonists revolves around differences in intrinsic activity. A highly detailed study comparing oliceridine, PZM21 and SR-17018 (among others) in a range of assays showed that these molecules behave as partial agonists. Moreover, there was a correlation between their therapeutic indices and their efficacies, but not their bias factors. If there is amplification of G-protein, but not arrestin pathways, then agonists with reduced efficacy would show high levels of activity at G-protein and low or absent activity at arrestin; offering analgesia with reduced side effects or 'apparent bias'. Overall, the current data suggests-and we support-caution in ascribing biased agonism to reduced-side-effect profiles for mu-agonist analgesics.
Assuntos
Analgésicos Opioides , Aprovação de Drogas , Dor/tratamento farmacológico , Analgésicos Opioides/química , Analgésicos Opioides/uso terapêutico , Animais , Avaliação Pré-Clínica de Medicamentos , Humanos , Camundongos , Camundongos Knockout , Dor/genética , Dor/metabolismo , Dor/patologia , beta-Arrestina 2/agonistas , beta-Arrestina 2/genética , beta-Arrestina 2/metabolismoRESUMO
BACKGROUND AND PURPOSE: Fentanyl analogues have been implicated in many cases of intoxication and death with overdose worldwide. The aim of this study is to investigate the pharmaco-toxicology of two fentanyl analogues: butyrylfentanyl (BUF) and 4-fluorobutyrylfentanyl (4F-BUF). EXPERIMENTAL APPROACH: In vitro, we measured agonist opioid receptor efficacy, potency, and selectivity and ability to promote interaction of the µ receptor with G protein and ß-arrestin 2. In vivo, we evaluated thermal antinociception, stimulated motor activity and cardiorespiratory changes in female and male CD-1 mice injected with BUF or 4F-BUF (0.1-6 mg·kg-1). Opioid receptor specificity was investigated using naloxone (6 mg·kg-1). We investigated the possible role of stress in increasing cardiorespiratory toxicity using the corticotropin-releasing factor 1 (CRF1) antagonist antalarmin (10 mg·kg-1). KEY RESULTS: Agonists displayed the following rank of potency at µ receptors: fentanyl > 4F-BUF > BUF. Fentanyl and BUF behaved as partial agonists for the ß-arrestin 2 pathway, whereas 4F-BUF did not promote ß-arrestin 2 recruitment. In vivo, we revealed sex differences in motor and cardiorespiratory impairments but not antinociception induced by BUF and 4F-BUF. Antalarmin alone was effective in blocking respiratory impairment induced by BUF in both sexes but not 4F-BUF. The combination of naloxone and antalarmin significantly enhanced naloxone reversal of the cardiorespiratory impairments induced by BUF and 4F-BUF in mice. CONCLUSION AND IMPLICATIONS: In this study, we have uncovered a novel mechanism by which synthetic opioids induce respiratory depression, shedding new light on the role of CRF1 receptors in cardiorespiratory impairments by µ agonists.
RESUMO
Nociceptin/orphanin FQ (N/OFQ) is the endogenous ligand of an inhibitory G protein coupled receptor named N/OFQ peptide receptor (NOP). Clinical and preclinical findings suggest that the blockade of the NOP signaling induces antidepressant-like effects. Additionally, the blockade of the NOP receptor during inescapable stress exposure prevented the acquisition of the helplessness phenotype, suggesting that NOP antagonists are able to increase stress resilience. BTRX-246040 (aka LY2940094) is a NOP receptor antagonist with high affinity, potency and selectivity for the NOP over classical opioid receptors. BTRX-246040 is under development for the treatment of depression, eating disorders and alcohol abuse and it already entered clinical trials. In the present study, the antidepressant effects of BTRX-246040 were evaluated in mice subjected to the forced swimming test and to the learned helplessness model of depression. Additionally, the ability of BTRX-246040 to prevent the development of the helpless behavior and to modulate adult hippocampal neurogenesis has been investigated. BTRX-246040 (30 mg/kg, i.p.) produced antidepressant-like effects in the forced swimming test and in the learned helplessness model. More interestingly, when given before the stress induction sessions it was able to prevent the development of the helplessness behavior. Under these experimental conditions, BTRX-246040 did not modulate adult hippocampal neurogenesis, neither in naive nor in stressed mice. This study, performed with a clinically viable ligand, further corroborates growing evidence indicating that the blockade of the NOP signaling may provide an innovative strategy for the treatment of stress related psychopathologies.
Assuntos
Peptídeos Opioides , Receptores Opioides , Animais , Antidepressivos/farmacologia , Hipocampo/metabolismo , Ligantes , Camundongos , Neurogênese , Peptídeos Opioides/metabolismo , Receptores Opioides/metabolismoRESUMO
Fentanyl derivatives (FENS) belongs to the class of Novel Synthetic Opioids that emerged in the illegal drug market of New Psychoactive Substances (NPS). These substances have been implicated in many cases of intoxication and death with overdose worldwide. Therefore, the aim of this study is to investigate the pharmaco-dynamic profiles of three fentanyl (FENT) analogues: Acrylfentanyl (ACRYLF), Ocfentanyl (OCF) and Furanylfentanyl (FUF). In vitro, we measured FENS opioid receptor efficacy, potency, and selectivity in calcium mobilization studies performed in cells coexpressing opioid receptors and chimeric G proteins and their capability to promote the interaction of the mu receptor with G protein and ß-arrestin 2 in bioluminescence resonance energy transfer (BRET) studies. In vivo, we investigated the acute effects of the systemic administration of ACRYLF, OCF and FUF (0.01-15 mg/kg i.p.) on mechanical and thermal analgesia, motor impairment, grip strength and cardiorespiratory changes in CD-1 male mice. Opioid receptor specificity was investigated in vivo using naloxone (NLX; 6 mg/kg i.p) pre-treatment. In vitro, the three FENS were able to activate the mu opioid receptor in a concentration dependent manner with following rank order potency: FUF > FENT=OCF > ACRYLF. All compounds were able to elicit maximal effects similar to that of dermorphin, with the exception of FUF which displayed lower maximal effects thus behaving as a partial agonist. In the BRET G-protein assay, all compounds behaved as partial agonists for the ß-arrestin 2 pathway in comparison with dermorphin, whereas FUF did not promote ß-arrestin 2 recruitment, behaving as an antagonist. In vivo, all the compounds increased mechanical and thermal analgesia with following rank order potency ACRYLF = FENT > FUF > OCF and impaired motor and cardiorespiratory parameters. Among the substances tested, FUF showed lower potency for cardiorespiratory and motor effects. These findings reveal the risks associated with the use of FENS and the importance of studying the pharmaco-dynamic properties of these drugs to better understand possible therapeutic interventions in the case of toxicity.
Assuntos
Fentanila , Receptores Opioides mu , Analgésicos Opioides , Animais , Fentanila/análogos & derivados , Fentanila/farmacologia , Furanos , Masculino , Camundongos , Dor/tratamento farmacológico , Receptores Opioides/metabolismo , Receptores Opioides mu/agonistas , beta-Arrestina 2/metabolismoRESUMO
Nociceptin/orphanin FQ controls several functions, including pain transmission, via stimulation of the N/OFQ peptide (NOP) receptor. Here we tested the hypothesis that NOP biased agonism may be instrumental for identifying innovative analgesics. In vitro experiments were performed with the dynamic mass redistribution label free assay and the NOP non-peptide agonists Ro 65-6570, AT-403 and MCOPPB. In vivo studies were performed in wild type and ß-arrestin 2 knockout mice using the formalin, rotarod and locomotor activity tests. In vitro all compounds mimicked the effects of N/OFQ behaving as potent NOP full agonists. In vivo Ro 65-6570 demonstrated a slightly higher therapeutic index (antinociceptive vs. motor impairment effects) in knockout mice. However, all NOP agonists displayed very similar therapeutic index in normal mice despite significant differences in G protein biased agonism. In conclusion the different ability of inducing G protein vs. ß-arrestin 2 recruitment of a NOP agonist cannot be applied to predict its antinociceptive vs. motor impairment properties.
RESUMO
RATIONALE: Depression and anxiety frequently co-occur, and this has important clinical implications. Previous studies showed that activation of the nociceptin/orphanin FQ receptor (NOP) elicits anxiolytic effects, while its blockade promotes consistent antidepressant actions. NOP antagonists are effective in reversing footshock-induced depressive-like behaviors, but their effects on stress-induced anxiety are still unclear. OBJECTIVE: This study aimed to investigate the effects of the NOP antagonist SB-612111 on footshock stress-induced anxiety behaviors. METHODS: Male Swiss mice were exposed to inescapable electric footshock stress, and behavioral phenotype was screened based on the ability to escape from footshock (i.e., helpless or non-helpless). Animals were then treated with diazepam (1 mg/kg) and SB-612111 (0.1-10 mg/kg), and their behavior was assessed in the elevated plus-maze (EPM) and open field test. RESULTS: When compared with non-stressed mice, helpless, but not non-helpless, animals displayed significant reductions in the time spent in and entries into open arms in the EPM. Diazepam significantly increased open arms exploration in helpless, non-helpless, and non-stressed mice. However, treatment with the NOP antagonist SB-612111 was inactive in naive mice, while it reversed anxiogenic-related behaviors in helpless mice and increased anxiety states in non-helpless mice. No effects on locomotion were observed. CONCLUSION: Helpless mice displayed increased anxiety compared to non-stressed and non-helpless animals, thus supporting use of this approach as an animal model to investigate anxiety/depression comorbidity. Additionally, SB-612111 modulated anxiety-like behaviors in male mice depending on individual stress susceptibility. Ultimately, NOP antagonists could be useful for treating anxiety in depressed patients.
Assuntos
Ansiolíticos/uso terapêutico , Ansiedade/tratamento farmacológico , Cicloeptanos/uso terapêutico , Piperidinas/uso terapêutico , Receptores Opioides/fisiologia , Estresse Psicológico/tratamento farmacológico , Animais , Ansiolíticos/farmacologia , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Ansiedade/psicologia , Depressão/tratamento farmacológico , Depressão/psicologia , Emoções/efeitos dos fármacos , Emoções/fisiologia , Masculino , Camundongos , Estresse Psicológico/psicologia , Receptor de NociceptinaRESUMO
BACKGROUND: The peptide nociceptin/orphanin FQ (N/OFQ) and its receptor (NOP) are implicated in the modulation of emotional states. Previous human and rodent findings support NOP antagonists as antidepressants. However, the role played by the N/OFQ-NOP receptor system in resilience to stress is unclear. AIMS: The present study investigated the effects of activation or blockade of NOP receptor signaling before exposure to acute stress. METHODS: The behavioral effects of the administration before stress of the NOP agonists Ro 65-6570 (0.01-1 mg/kg) and MCOPPB (0.1-10 mg/kg), and the NOP antagonist SB-612111 (1-10 mg/kg) were assessed in mice exposed to inescapable electric footshock and forced swim as stressors. The behavioral phenotype of mice lacking the NOP receptor (NOP(-/-)) exposed to inescapable electric footshock was also investigated. RESULTS: The activation of NOP receptor signaling with the agonists increased the percentage of mice developing helpless behavior and facilitated immobile posture. In contrast, the blockade of NOP receptor reduced the acquisition of depressive-like phenotypes, and similar resistance to develop helpless behaviors was observed in NOP(-/-) mice. Under the same stressful conditions, the antidepressant nortriptyline (20 mg/kg) did not change the acquisition of helpless behavior and immobile posture. CONCLUSIONS: These findings support the view that NOP activation during acute stress facilitates the development of depressive-related behaviors, whereas NOP blockade has a protective outcome. This study showed for first time that NOP antagonists are worthy of investigation as preemptive treatments in patients with severe risk factors for depression.