Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
Physiol Plant ; 176(3): e14363, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38837786

RESUMO

Edible mushrooms are an important food source with high nutritional and medicinal value. They are a useful source for studying phylogenetic evolution and species divergence. The exploration of the evolutionary relationships among these species conventionally involves analyzing sequence variations within their complete mitochondrial genomes, which range from 31,854 bp (Cordyceps militaris) to 197,486 bp (Grifolia frondosa). The study of the complete mitochondrial genomes of edible mushrooms has emerged as a critical field of research, providing important insights into fungal genetic makeup, evolution, and phylogenetic relationships. This review explores the mitochondrial genome structures of various edible mushroom species, highlighting their unique features and evolutionary adaptations. By analyzing these genomes, robust phylogenetic frameworks are constructed to elucidate mushrooms lineage relationships. Furthermore, the exploration of different variations of mitochondrial DNA presents novel opportunities for enhancing mushroom cultivation biotechnology and medicinal applications. The mitochondrial genomic features are essential for improving agricultural practices and ensuring food security through improved crop productivity, disease resistance, and nutritional qualities. The current knowledge about the mitochondrial genomes of edible mushrooms is summarized in this review, emphasising their significance in both scientific research and practical applications in bioinformatics and medicine.


Assuntos
Agaricales , Genoma Mitocondrial , Filogenia , Genoma Mitocondrial/genética , Agaricales/genética , Agaricales/classificação , Evolução Molecular , Genoma Fúngico/genética
2.
Biodegradation ; 35(4): 451-468, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38289541

RESUMO

Microplastics pose significant challenges to ecosystems and organisms. They can be ingested by marine and terrestrial species, leading to potential health risks and ecological disruptions. This study aims to address the urgent need for effective remediation strategies by focusing on the biodegradation of microplastics, specifically polyvinyl chloride (PVC) derivatives, using the bacterial strain Bacillus albus. The study provides a comprehensive background on the accumulation of noxious substances in the environment and the importance of harnessing biodegradation as an eco-friendly method for pollutant elimination. The specific objective is to investigate the enzymatic capabilities of Bacillus albus, particularly the alpha/beta hydrolases (ABH), in degrading microplastics. To achieve this, in-silico studies were conducted, including analysis of the ABH protein sequence and its interaction with potential inhibitors targeting PVC derivatives. Docking scores of - 7.2 kcal/mol were obtained to evaluate the efficacy of the interactions. The study demonstrates the promising bioremediation prospects of Bacillus albus for microplastics, highlighting its potential as a key player in addressing microplastic pollution. The findings underscore the urgent need for further experimental validation and practical implementation of Bacillus albus in environmental remediation strategies.


Assuntos
Bacillus , Biodegradação Ambiental , Cloreto de Polivinila , Bacillus/enzimologia , Bacillus/metabolismo , Cloreto de Polivinila/química , Hidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Microplásticos/metabolismo , Simulação de Acoplamento Molecular
3.
Environ Res ; 223: 115429, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36746207

RESUMO

Cellulose is the most abundant polysaccharide on earth. It has a large number of desirable properties. Its low toxicity makes it more useful for a variety of applications. Nowadays, its composites are used in most engineering fields. Composite consists of a polymer matrix and use as a reinforcing material. By reducing the cost of traditional fibers, it has an increasing demand for environment-friendly purposes. The use of these types of composites is inherent in moisture absorption with hindered natural fibers. This determines the reduction of polymer composite material. By appropriate chemical surface treatment of cellulose composite materials, the effect could be diminished. The most modern and advanced techniques and methods for the preparation of cellulose and polymer composites are discussed here. Cellulosic composites show a reinforcing effect on the polymer matrix as pointed out by mechanical characterization. Researchers tried their hard work to study different ways of converting various agricultural by-products into useful eco-friendly polymer composites for sustainable production. Cellulose plays building blocks, that are critical for polymer products and their engineering applications. The most common method used to prepare composites is in-situ polymerization. This help to increase the yields of cellulosic composites with a significant enhancement in thermal stability and mechanical properties. Recently, cellulose composites used as enhancing the incorporation of inorganic materials in multi-functional properties. Furthermore, we have summarized in this review the potential applications of cellulose composites in different fields like packaging, aerogels, hydrogels, and fibers.


Assuntos
Celulose , Polímeros , Celulose/química , Estudos Prospectivos
4.
Environ Res ; 222: 115253, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36702191

RESUMO

Epoxy resins are important thermosetting polymers. They are widely used in many applications i.e., adhesives, plastics, coatings and sealers. Epoxy molding compounds have attained dominance among common materials due to their excellent mechanical properties. The sol-gel simple method was applied to distinguish the impact on the colloidal time. The properties were obtained with silica-based fillers to enable their mechanical and thermal improvement. The work which we have done here on epoxy-based nanocomposites was successfully modified. The purpose of this research was to look into the effects of cellulose nanocrystals (CNCs) on various properties and applications. CNCs have recently attracted a lot of interest in a variety of industries due to their high aspect ratio, and low density which makes them perfect candidates. Adding different amounts of silica-based nanocomposites to the epoxy system. Analyzed with different techniques such as Fourier-transformed infrared spectroscope (FTIR), thermogravimetric analysis (TGA) and scanning electronic microscopic (SEM) to investigate the morphological properties of modified composites. The various %-age of silica composite was prepared in the epoxy system. The 20% of silica was shown greater enhancement and improvement. They show a better result than D-400 epoxy. Increasing the silica, the transparency of the films decreased, because clustering appears. This shows that the broad use of CNCs in environmental engineering applications is possible, particularly for surface modification, which was evaluated for qualities such as absorption and chemical resistant behavior.


Assuntos
Celulose , Nanopartículas , Celulose/química , Celulose/ultraestrutura , Porosidade , Água/química , Dióxido de Silício/química , Nanopartículas/química
5.
J Environ Manage ; 326(Pt B): 116803, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36436246

RESUMO

Terrestrial protected areas (TPAs) have become a keystone in nature conservation and environmental policy-making because they provide a potpourri of ecosystem services-benefits that are foundational for human existence and well-being. The intensity of ecosystem services production (i.e., potential) and use (i.e., realized) from a TPA depends on several variables such as ecosystem type, TPA size, population in the region, and development infrastructure. However, little is known about how ecosystem services intensity varies in relation to these variables. The TPAs provide a rich setting to investigate these relationships in support of better management for both TPAs and ecosystem services. Here, using the Co$ting Nature model, I map the potential and realized ecosystem services intensity from 140 of Pakistan's TPAs. To ascertain the direct impacts on realized ecosystem services, I use ArcGIS and InVEST tools to infer three spatial variables: TPA size (area), TPA distance from the nearest urban center, and visitation rates to the TPA. Results from the statistical analyses show that potential and realized ecosystem services are positively and significantly correlated, meaning increased supply results in more use. Yet, both are negatively correlated with TPA size and distance from the urban centers. Finally, a multivariate regression analysis is conducted considering potential ecosystem services and the selected three spatial variables as predictors for realized ecosystem services. The analysis indicates that potential ecosystem services and the size of a TPA are both significant for realized ecosystem services, with the potential services positively and TPA size negatively correlated with realized ecosystem services. The data generated and the results obtained in the study can inform the protection, stewardship, and expansion of TPAs at national and global scales.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Humanos , Conservação dos Recursos Naturais/métodos
6.
Molecules ; 28(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37110533

RESUMO

Zero-valent iron nanoparticles (ZVI-NPs) are utilized for the indemnification of a wide range of environmental pollutants. Among the pollutants, heavy metal contamination is the major environmental concern due to their increasing prevalence and durability. In this study, heavy metal remediation capabilities are determined by the green synthesis of ZVI-NPs using aqueous seed extract of Nigella sativa which is a convenient, environmentally friendly, efficient, and cost-effective technique. The seed extract of Nigella sativa was utilized as a capping and reducing agent for the generation of ZVI-NPs. UV-visible spectrophotometry (UV-vis), scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDX), and Fourier transform infrared spectroscopy (FTIR) was used to investigate the ZVI-NP composition, shape, elemental constitution, and perspective functional groups, respectively. The biosynthesized ZVI-NPs displayed a peak of plasmon resonance spectra at 340 nm. The synthesized NPs were cylindrical in shape, with a size of 2 nm and (-OH) hydroxyl, (C-H) alkanes and alkynes N-C, N=C, C-O, =CH functional groups attached to the surface of ZVI-NPs. Heavy metals were successfully remediated from industrial wastewater collected from the various tanneries of Kasur. During the reaction duration of 24 h, different concentrations of ZVI-NPs (10 µg, 20 µg and 30 µg) per 100 mL were utilized for the removal of heavy metals from industrial wastewater. The 30 µg/100 mL of ZVI-NPs proved the pre-eminent concentration of NPs as it removed >90% of heavy metals. The synthesized ZVI-NPs were analyzed for compatibility with the biological system resulting in 87.7% free radical scavenging, 96.16% inhibition of protein denaturation, 60.29% and 46.13% anti-cancerism against U87-MG and HEK 293 cell lines, respectively. The physiochemical and exposure mathematical models of ZVI-NPs represented them as stable and ecofriendly NPs. It proved that biologically synthesized NPs from a seed tincture of Nigella sativa have a strong potential to indemnify heavy metals found in industrial effluent samples.


Assuntos
Nanopartículas Metálicas , Metais Pesados , Nigella sativa , Humanos , Ferro/química , Águas Residuárias , Células HEK293 , Metais Pesados/química , Extratos Vegetais , Nanopartículas Metálicas/química , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Molecules ; 28(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37446687

RESUMO

The pharmacological effectiveness of indoles, benzoxazepines and benzodiazepines initiated our synthesis of indole fused benoxazepine/benzodiazepine heterocycles, along with enhanced biological usefulness of the fused rings. Activated indoles 5, 6 and 7 were synthesized using modified Bischler indole synthesis rearrangement. Indole 5 was substituted with the trichloroacetyl group at the C7 position, yielding 8, exclusively due to the increased nucleophilic character of C7. When trichloroacylated indole 8 was treated with basified ethanol or excess amminia, indole acid 9 and amide 10 were yielded, respectively. Indole amide 10 was expected to give indole fused benoxazepine/benzodiazepine 11a/11b on treatment with alpha halo ester followed by a coupling agent, but when the reaction was tried, an unexpectedly rearranged novel product, 1,3-bezodiazine 12, was obtained. The synthetic compounds were screened for anticholinesterase and antibacterial potential; results showed all products to be very important candidates for both activities, and their potential can be explored further. In addition, 1,3-bezodiazine 12 was explored by DFT studies, Hirshfeld surface charge analysis and structural insight to obrain a good picture of the structure and reactivity of the products for the design of derivatised drugs from the novel compound.


Assuntos
Anti-Infecciosos , Antipsicóticos , Inibidores da Colinesterase/farmacologia , Indóis/química , Antibacterianos/farmacologia , Benzodiazepinas
8.
Molecules ; 28(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36677695

RESUMO

The widespread and indiscriminate use of broad-spectrum antibiotics leads to microbial resistance, which causes major problems in the treatment of infectious diseases. However, advances in nanotechnology have opened up new domains for the synthesis and use of nanoparticles against multidrug-resistant pathogens. The traditional approaches for nanoparticle synthesis are not only expensive, laborious, and hazardous but also have various limitations. Therefore, new biological approaches are being designed to synthesize economical and environmentally friendly nanoparticles with enhanced antimicrobial activity. The current study focuses on the isolation, identification, and screening of metallotolerant fungal strains for the production of silver nanoparticles, using antimicrobial activity analysis and the characterization of biologically synthesized silver nanoparticles by X-ray diffraction (XRD) spectroscopy, energy-dispersive X-ray spectroscopy (EDX), and scanning electron microscopy (SEM). In total, 11 fungal isolates were isolated and screened for the synthesis of AgNPs, while the Penicillium notatum (K1) strain was found to be the most potent, demonstrating biosynthetic ability. The biologically synthesized silver nanoparticles showed excellent antibacterial activity against the bacteria Escherichia coli (ATCC10536), Bacillus subtilis, Staphylococcus aureus (ATCC9144), Pseudomonas aeruginosa (ATCC10145), Enterococcus faecalis, and Listeria innocua (ATCC13932). Furthermore, three major diffraction peaks in the XRD characterization, located at the 2θ values of 28.4, 34.8, 38.2, 44, 64, and 77°, confirmed the presence of AgNPs, while elemental composition analysis via EDX and spherical surface topology with a scanning electron microscope indicated that its pure crystalline nature was entirely composed of silver. Thus, the current study indicates the enhanced antibacterial capability of mycologically synthesized AgNPs, which could be used to counter multidrug-resistant pathogens.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/química , Bactérias , Espectrometria por Raios X , Desenvolvimento Muscular , Espectroscopia de Infravermelho com Transformada de Fourier , Extratos Vegetais/química
9.
Molecules ; 28(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37764218

RESUMO

Graphene has attracted extensive attention in various fields due to its intriguing properties. In this work, nanocomposite films based on poly(lactic acid) (PLA and PLLA) polymers filled with graphene oxide (GO) were developed. The impact of treating GO with the anionic surfactant dioctyl sulfosuccinate sodium salt (AOT) on the properties of the resulting nanocomposites was investigated. To determine the morphological, optical, and structural properties of the obtained materials, physicochemical analyses were performed, including scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier-transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD) analysis. Additionally, the thermal properties and wettability of neat polymers and nanocomposites were thoroughly investigated using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and contact angle analysis. It was observed that GO was well dispersed throughout the PLA and PLLA matrix, leading to stronger interface bonding. The results demonstrate that the untreated and treated GO improved the crystallinity and thermal stability properties of the PLA and PLLA. However, the AOT-treated GO has significantly higher performance compared to the untreated GO in terms of crystallinity, melting temperature (increased by ~15 °C), and wettability (the contact angle decreased by ~30°). These findings reveal the high performance of the developed novel composite, which could be applied in tissue engineering as a scaffold.

10.
Molecules ; 28(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36677548

RESUMO

All nutrient-rich feed and food environments, as well as animal and human mucosae, include lactic acid bacteria known as Lactobacillus plantarum. This study reveals an advanced analysis to study the interaction of probiotics with the gastrointestinal environment, irritable bowel disease, and immune responses along with the analysis of the secondary metabolites' characteristics of Lp YW11. Whole genome sequencing of Lp YW11 revealed 2297 genes and 1078 functional categories of which 223 relate to carbohydrate metabolism, 21 against stress response, and the remaining 834 are involved in different cellular and metabolic pathways. Moreover, it was found that Lp YW11 consists of carbohydrate-active enzymes, which mainly contribute to 37 glycoside hydrolase and 28 glycosyltransferase enzyme coding genes. The probiotics obtained from the BACTIBASE database (streptin and Ruminococcin-A bacteriocins) were docked with virulent proteins (cdt, spvB, stxB, and ymt) of Salmonella, Shigella, Campylobacter, and Yersinia, respectively. These bacteria are the main pathogenic gut microbes that play a key role in causing various gastrointestinal diseases. The molecular docking, dynamics, and immune simulation analysis in this study predicted streptin and Ruminococcin-A as potent nutritive bacteriocins against gut symbiotic pathogens.


Assuntos
Bacteriocinas , Lactobacillus plantarum , Probióticos , Animais , Humanos , Simulação de Acoplamento Molecular , Bacteriocinas/genética , Bacteriocinas/farmacologia , Bacteriocinas/metabolismo , Bactérias/metabolismo , Probióticos/farmacologia , Lactobacillus plantarum/metabolismo
11.
World J Microbiol Biotechnol ; 39(12): 342, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37828125

RESUMO

In the enzymatic synthesis of galacto-oligosaccharide (GOS), the primary by-products include glucose, galactose and unreacted lactose. This This study was aimed to provide a method to to purify GOS by yeat fermentation and explore the interaction between GOS and CAS with a view for expanding the prospects of GOS application in the food industry. The crude GOS(25.70 g/L) was purified in this study using the fermentation method with Kluyveromyces lactis CICC 1773. Optimal conditions for purification with the yeast were 75 g/L of the yeast inoculation rate and 50 g/L of the initial crude GOS concentration for 12 h of incubation. After removing ethanol produced by yeast by low-temperature distillation, GOS content could reach 90.17%. A study of the interaction between GOS and casein (CAS) in a simulated acidic fermentation system by D-(+)-gluconic acid δ-lactone (GDL) showed that the GOS/CAS complexes with higher GOS concentrations, e.g., 4% and 6% (w/v), was more viscoelastic with higher water-holding capacity, but decreased hardness, elasticity, and cohesiveness at 6% (w/v) of GOS. The addition of GOS to CAS suspension significantly caused (p<0.05) decreased particle sizes of the formed GOS/CAS complexes, and the suspension system became more stable. FT-IR spectra confirmed the existence of different forms of molecular interactions between CAS and GOS, e.g., hydrogen bonding and hydrophobic interaction, and the change of secondary structure after CAS binding to GOS.


Assuntos
Caseínas , Kluyveromyces , Fermentação , Espectroscopia de Infravermelho com Transformada de Fourier , Oligossacarídeos/metabolismo , Lactose/metabolismo , Galactose , beta-Galactosidase/metabolismo
12.
Ann Surg Oncol ; 29(2): 1182-1191, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34486089

RESUMO

BACKGROUND: For patients undergoing rectal cancer surgery, we evaluated whether suboptimal preoperative surgeon evaluation of resection margins is a latent condition factor-a factor that is common, unrecognized, and may increase the risk of certain adverse events, including local tumour recurrence, positive surgical margin, nontherapeutic surgery, and in-hospital mortality. METHODS: In this observational case series of patients who underwent rectal cancer surgery during 2016 in Local Health Integrated Network 4 region of Ontario (population 1.4 million), chart review and a trigger tool were used to identify patients who experienced the adverse events. An expert panel adjudicated whether each event was preventable or nonpreventable and identified potential contributing factors to adverse events. RESULTS: Among 173 patients, 25 (14.5%) had an adverse event and 13 cases (7.5%) were adjudicated as preventable. Rate of surgeon awareness of preoperative margin status was low at 50% and similar among cases with and without an adverse event (p = 0.29). Suboptimal surgeon preoperative evaluation of surgical margins was adjudicated a contributing factor in all 11 preventable local recurrence, positive margin, and nontherapeutic surgery cases. Failure to rescue was judged a contributing factor in the two cases with preventable in-hospital mortality. CONCLUSIONS: Suboptimal surgeon preoperative evaluation of surgical margins in rectal cancer is likely a latent condition factor. Optimizing margin evaluation may be an efficient quality improvement target.


Assuntos
Neoplasias Retais , Humanos , Margens de Excisão , Recidiva Local de Neoplasia/epidemiologia , Recidiva Local de Neoplasia/etiologia , Ontário/epidemiologia , Cuidados Pré-Operatórios , Neoplasias Retais/cirurgia
13.
Environ Res ; 215(Pt 1): 114241, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36100100

RESUMO

This study is based on the removal of methylene blue (MB) from aqueous solution by cost effective and biodegradable adsorbent carboxymethyl starch grafted polyvinyl pyrolidone (Car-St-g-PVP). The Car-St-g-PVP was synthesized by grafting vinyl pyrolidone onto carboxymethyl starch by free radical polymerization reaction. The structure and different properties of Car-St-g-PVP were determined by 1H NMR, FT-IR, XRD, TGA and SEM. A series of batch experiments were conducted for the removal of MB, The adsorption affecting factors such as temperature, contact time, initial concentration of MB dye, dose of Car-St-g-PVP and pH were studied in detail. The other parameters like the thermodynamic study, kinetics and isothermal models were fitted to the experimental data. The results showed that pseudo 2nd order kinetics and Langmuir's adsorption isotherms were best fitted to experimental data with regression coefficient R2 viz. 0.99 and 0.97. The kinetic study showed that the adsorption mechanism favored chemisorption. The Gibbs free energy (ΔG°) for the adsorption process was found to be -7.31 kJ/mol, -8.23 kJ/mol, -9.00 kJ/mol and -10.10 kJ/mol at 25 °C, 35 °C, 45 °C and 55 °C respectively. The negative values of ΔG° suggested the spontaneous nature of the adsorption process. Similarly, the positive values of entropy (ΔS°) and enthalpy (ΔH°) 91.27 J/k.mol and 19.90 kJ/mol showed the increasing randomness and endothermic nature of the adsorption process. The value of separation factor (RL) was found to be less than one (RL < 1), which supported the feasibility of the adsorption process. The maximum MB removal percentage (% R) was found to be 98.6%. So, these findings show that Car-St-g-PVP can be meritoriously used for the treatment of MB from wastewater.


Assuntos
Azul de Metileno , Poluentes Químicos da Água , Adsorção , Ácidos Carboxílicos , Concentração de Íons de Hidrogênio , Cinética , Azul de Metileno/química , Polivinil , Povidona , Espectroscopia de Infravermelho com Transformada de Fourier , Amido , Termodinâmica , Águas Residuárias
14.
Molecules ; 27(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35807432

RESUMO

Parthenium hysterophorus L. is a poisonous Asteraceae weed. The phytochemical profile, antioxidant activity, total phenolic contents (TPC), total flavonoid contents (TFC), and cytotoxicity of Parthenium hysterophorus L. flower extract were evaluated in this study, and the toxic effects were assessed in rabbits. The HPLC-DAD system was used for phytochemical analysis. The hemolytic and DPPH assays were performed. The effects of orally administering the flower crude extract to rabbits (n = 5) at four different doses (10, 20, 40, and 80 mg/kg) for ten days on hematological and biochemical parameters were investigated. The crude extract of the flower contained phenolic compounds such as Gallic acid, Chlorogenic acid, Ellagic acid, and P Coumaric acid, which were detected at different retention times, according to the HPLC results. With a sample peak of 4667.475 %, chlorogenic acid was abundant. At concentrations of 80 µg, the methanolic extract of flowers had total phenolic contents (89.364 ± 4.715 g GAE/g) and total flavonoid contents (65.022 ± 2.694 g QE/g). In the DPPH free radical scavenging assay, 80 µg of extract had the highest cell inhibition of 76.90% with an IC50 value of 54.278 µg/µL, while in the hemolytic assay 200 µg of extract had the highest cell inhibition of 76.90% with an IC50 > 500. The biochemical and hematological parameters were altered in the flower extract-fed groups as compared to the control (p < 0.05). The toxic effects on the blood, liver, and kidneys were confirmed. The findings also confirmed the presence of phenolic and flavonoid content in the flower extract, both of which contribute to the plant's antioxidant potential.


Assuntos
Antioxidantes , Asteraceae , Animais , Antioxidantes/química , Asteraceae/química , Flavonoides/análise , Flavonoides/farmacologia , Fenóis/análise , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Coelhos
15.
Molecules ; 27(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35807470

RESUMO

In this study, the antibacterial and antifungal properties of silver nanoparticles synthesized with the aqueous plant extract of Acer oblongifolium leaves were defined using a simplistic, environmentally friendly, reliable, and cost-effective method. The aqueous plant extract of Acer oblongifolium, which served as a capping and reducing agent, was used to biosynthesize silver nanoparticles. UV visible spectroscopy, X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and scanning electron microscopy were used to analyze the biosynthesized Acer oblongifolium silver nanoparticles (AgNPs). Gram-positive bacteria (Bacillus paramycoides and Bacillus cereus) and Gram-negative bacteria (E. coli) were used to test the AgNPs' antibacterial activity. The presence of different functional groups was determined by FTIR. The AgNPs were rod-like in shape. The nanoparticles were more toxic against Escherichiacoli than both Bacillus cereus and Bacillus paramycoides. The AgNPs had IC50 values of 6.22 and 9.43 and mg/mL on HeLa and MCF-7, respectively, proving their comparatively strong potency against MCF-7. This confirmed that silver nanoparticles had strong antibacterial activity and antiproliferative ability against MCF-7 and HeLa cell lines. The mathematical modeling revealed that the pure nanoparticle had a high heat-absorbing capacity compared to the mixed nanoparticle. This research demonstrated that the biosynthesized Acer oblongifolium AgNPs could be used as an antioxidant, antibacterial, and anticancer agent in the future.


Assuntos
Acer , Bacillus , Nanopartículas Metálicas , Antibacterianos , Escherichia coli , Células HeLa , Humanos , Nanopartículas Metálicas/química , Extratos Vegetais/química , Folhas de Planta/química , Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
16.
Molecules ; 27(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36500601

RESUMO

Medicinal plants have played an essential role in the treatment of various diseases. Thymus vulgaris, a medicinal plant, has been extensively used for biological and pharmaceutical potential. The current study was performed to check the biopotential of active biological compounds. The GC-MS analysis identified 31 compounds in methanolic crude extract, among which thymol, carvacrol, p-cymene, and eugenol are the main phytoconstituents present in T. vulgaris. The HPLC analysis quantified that flavonoids and phenolic acids are present in a good concentration in the active fraction of ethyl acetate and n-butanol. FTIR confirmed the presence of functional groups such as phenols, a carboxylic group, hydroxy group, alcohols, and a benzene ring. Among both fractions, ethyl acetate showed high antioxidant activity in the DPPH (84.1 0.88) and ABTS (87.1 0.89) assays, respectively. The anti-inflammatory activity of the fractions was done in vitro and in vivo by using a carrageenan-induced paw edema assay, while the hexane-based extract showed high anti-inflammatory activity (57.1 0.54) in a dose-response manner. Furthermore, the lead compound responsible for inhibition in the denaturation of proteins is thymol, which exhibits the highest binding affinity with COX1 (-6.4 KJ/mol) and COX2 (-6.3 KJ/mol) inflammatory proteins. The hepatotoxicity analysis showed that plant-based phytoconstituents are safe to use and have no toxicity, with no necrosis, fibrosis, and vacuolar degeneration, even at a high concentration of 800 mg/kg body weight. Furthermore, the in silico analysis of HPLC phytochemical compounds against gastric cancer genes showed that chlorogenic acid exhibited anticancer activity and showed good drug-designing characteristics. Thrombolysis and hemolysis are the major concerns of individuals suffering from gastric cancer. However, the T. vulgaris fractions showed thrombolysis from 17.6 to 5.4%; similarly, hemolysis ranged from 9.73 to 7.1% at a concentration of 12 mg/mL. The phytoconstituents present in T. vulgaris have the potential for multiple pharmacological applications. This should be further investigated to isolate bioactive compounds that can be used for the treatment of different ailments.


Assuntos
Plantas Medicinais , Neoplasias Gástricas , Thymus (Planta) , Humanos , Cromatografia Gasosa-Espectrometria de Massas , Extratos Vegetais/química , Neoplasias Gástricas/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Plantas Medicinais/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Ciclo-Oxigenase 2
17.
Molecules ; 27(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36080167

RESUMO

The important role of Lactiplantibacillus plantarum strains in improving the human mucosal and systemic immunity, preventing non-steroidal anti-provocative drug-induced reduction in T-regulatory cells, and as probiotic starter cultures in food processing has motivated in-depth molecular and genomic research of these strains. The current study, building on this research concept, reveals the importance of Lactiplantibacillus plantarum 13-3 as a potential probiotic and bacteriocin-producing strain that helps in improving the condition of the human digestive system and thus enhances the immunity of the living beings via various extracellular proteins and exopolysaccharides. We have assessed the stability and quality of the L. plantarum 13-3 genome through de novo assembly and annotation through FAST-QC and RAST, respectively. The probiotic-producing components, secondary metabolites, phage prediction sites, pathogenicity and carbohydrate-producing enzymes in the genome of L. plantarum 13-3 have also been analyzed computationally. This study reveals that L. plantarum 13-3 is nonpathogenic with 218 subsystems and 32,918 qualities and five classes of sugars with several important functions. Two phage hit sites have been identified in the strain. Cyclic lactone autoinducer, terpenes, T3PKS, and RiPP-like gene clusters have also been identified in the strain evidencing its role in food processing. Combined, the non-pathogenicity and the food-processing ability of this strain have rendered this strain industrially important. The subsystem and qualities characterization provides a starting point to investigate the strain's healthcare-related applications as well.


Assuntos
Bacteriocinas , Lactobacillus plantarum , Probióticos , Bacteriocinas/metabolismo , Microbiologia de Alimentos , Inocuidade dos Alimentos , Humanos , Lactobacillus plantarum/metabolismo , Probióticos/metabolismo
18.
Molecules ; 27(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36144579

RESUMO

In this research, a new biodegradable and eco-friendly adsorbent, starch-grafted polymethyl methacrylate (St-g-PMMA) was synthesized. The St-g-PMMA was synthesized by a free radical polymerization reaction in which methyl methacrylate (MMA) was grafted onto a starch polymer chain. The reaction was performed in water in the presence of a potassium persulfate (KPS) initiator. The structure and different properties of the St-g-PMMA was explored by FT-IR, 1H NMR, TGA, SEM and XRD. After characterization, the St-g-PMMA was used for the removal of MB dye. Different adsorption parameters, such as effect of adsorbent dose, effect of pH, effect of initial concentration of dye solution, effect of contact time and comparative adsorption study were investigated. The St-g-PMMA showed a maximum removal percentage (R%) of 97% towards MB. The other parameters, such as the isothermal and kinetic models, were fitted to the experimental data. The results showed that the Langmuir adsorption and pseudo second order kinetic models were best fitted to experimental data with a regression coefficient of R2 = 0.93 and 0.99, respectively.


Assuntos
Azul de Metileno , Poluentes Químicos da Água , Adsorção , Radicais Livres , Gentamicinas , Concentração de Íons de Hidrogênio , Cinética , Metacrilatos , Metilmetacrilatos , Polimerização , Polimetil Metacrilato , Espectroscopia de Infravermelho com Transformada de Fourier , Amido/química , Água , Poluentes Químicos da Água/química
19.
Pak J Med Sci ; 38(2): 351-355, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35310808

RESUMO

Background and Objective: Maintaining privacy and ensuring confidentiality with patients is paramount to developing an effective patient-provider relationship. This is often challenging in over-crowded Emergency Departments (EDs). This survey was designed to explore patients' perceptions on maintenance of privacy and confidentiality and their subsequent interactions with providers in a busy tertiary care hospital in Karachi. Methods: Trained nursing staff conducted structured interviews with 571 patients who presented to The Indus Hospital (TIH) ED from January to December 2020. All patients were 14 years of age or older, could speak and understand Urdu, and provide informed consent. Patients were asked about their perceptions of privacy and confidentiality in the ED and whether this affected their interactions with providers. Results: Respondents were primarily men (64%) under the age of 45 (62%) presenting for the first time (49%). The majority of patients felt that privacy and confidentiality were maintained, however 10% of patients reported that they had rejected examination due to privacy concerns and 15% of patients reported that they had changed or omitted information provided to a provider due to confidentiality concerns. There was correlation between privacy and confidentiality concerns and patient-provider interactions (p<0.0001). Conclusions: Despite the often over-crowded and busy environment of the ED, patients generally felt that privacy and confidentiality were maintained. Given the correlation between perception and behavior and the importance of an effective patient-provider relationship, particularly in the acute setting when morbidity and mortality is high, initiatives that focus on maintaining privacy and confidentiality should be pursued.

20.
J Magn Reson Imaging ; 53(1): 38-48, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31943576

RESUMO

BACKGROUND: The detection of liver metastases is important for pancreatic cancer curative treatment eligibility. The data suggest that magnetic resonance imaging (MRI) is more sensitive than computed tomography (CT) for the diagnosis of pancreatic cancer liver metastases. However, MRI is not currently recommended in multiple published guidelines. PURPOSE: To perform a comparative diagnostic test accuracy systematic review and meta-analysis comparing CT and MRI for pancreatic cancer liver metastases detection. STUDY TYPE: Systematic review and meta-analysis. DATA SOURCES: MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, Scopus, and multiple radiology society meeting archives were searched until November 2018. Comparative design studies reporting on liver CT and MRI accuracy for detection of pancreatic cancer liver metastases in the same cohort were included. FIELD STRENGTH: 1.5T or 3.0T. ASSESSMENT: Demographic, methodologic, and diagnostic test accuracy data were extracted. Risk of bias was assessed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS)-2 tool. STATISTICAL TESTS: Accuracy metrics were obtained using bivariate random-effects meta-analysis. The impact of different covariates on accuracy estimates was assessed using a meta-regression model. Covariates included modality, study design, tumor characteristics, risk of bias, and imaging protocols. RESULTS: Fourteen studies including 987 patients with pancreatic cancer (205 with liver metastases) were included. Sensitivity for CT and MRI was 45% (confidence intervals [95% CI] 21-71%) and 83% (95% CI 74-88%), respectively. Specificity for CT and MRI was 94% (95% CI 84-98%) and 96% (95% CI 93-97%), respectively. The greater observed sensitivity of MRI was preserved in the meta-regression model (P = 0.01), while no difference in specificity was detected (P = 0.16). CT sensitivity was highest for triphasic and quadriphasic examinations compared to single phase or biphasic protocols (P = 0.03). Most studies were at high risk of bias. DATA CONCLUSION: MRI is more sensitive than CT for pancreatic cancer liver metastases detection, accounting for confounding variables. Consideration of this finding in clinical practice guidelines is recommended. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 3.


Assuntos
Neoplasias Hepáticas , Neoplasias Pancreáticas , Testes Diagnósticos de Rotina , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Imageamento por Ressonância Magnética , Neoplasias Pancreáticas/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa