Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 107(5-6): 1503-1513, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36719432

RESUMO

Viruses have spread throughout the world and cause acute illness or death among millions of people. There is a growing concern about methods to control and combat early-stage viral infections to prevent the significant public health problem. However, conventional detection methods like polymerase chain reaction (PCR) requires sample purification and are time-consuming for further clinical diagnosis. Hence, establishing a portable device for rapid detection with enhanced sensitivity and selectivity for the specific virus to prevent further spread becomes an urgent need. Many research groups are focusing on the potential of the electrochemical sensor to become a key for developing point-of-care (POC) technologies for clinical analysis because it can solve most of the limitations of conventional diagnostic methods. Herein, this review discusses the current development of electrochemical sensors for the detection of respiratory virus infections and flaviviruses over the past 10 years. Trends in future perspectives in rapid clinical detection sensors on viruses are also discussed. KEY POINTS: • Respiratory related viruses and Flavivirus are being concerned for past decades. • Important to differentiate the cross-reactivity between the virus in same family. • Electrochemical biosensor as a suitable device to detect viruses with high performance.


Assuntos
Técnicas Biossensoriais , Flavivirus , Vírus , Humanos
2.
Lasers Med Sci ; 37(2): 1265-1271, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34331605

RESUMO

Breast cancer is responsible for one of the top leading causes of cancer deaths among women. Radiotherapy (RT) uses high energy radiation to kill cancer cells, but this method has been reportedly linked to risks of toxicity. Post-therapeutic relapse from RT believed to be caused by its toxicity is one of the challenges encountered during tumour therapy. Therefore, further attention should be devoted to developing novel anti-tumour therapeutic approaches. The role of low-level laser therapy (LLLT) in breast cancer management is to alleviate the side effects arising from RT, instead of acting against the tumour cells directly. This study investigated the effects of low-level laser (532 nm), as well as single and fractionated irradiation, on breast cancer MCF 7 cell line. Additionally, this study assessed the most effective laser parameter for fractionated irradiation. The MCF 7 cells were irradiated with green laser power at 1.5, 45.0, and 100.0 mW with a spot size diameter of 0.7 mm for 1, 5, 10, and 15 min. The irradiation was carried out in single, double, and triple fractionation separated by 5- and 10-min intervals in between the fractional regimes. The laser output of 100 mW showed a promising potential in killing cells with single fractionation. However, as the irradiation was fractionated into two, power of 1.5 mW appeared to be more effective in cell death, which contributed to the lowest percentage cells viable of 31.4% recorded in the study. It was proven that fractionated regime was more successful in tumour cell death.


Assuntos
Neoplasias da Mama , Terapia com Luz de Baixa Intensidade , Neoplasias da Mama/patologia , Neoplasias da Mama/radioterapia , Feminino , Humanos , Lasers , Terapia com Luz de Baixa Intensidade/métodos , Células MCF-7 , Recidiva Local de Neoplasia
3.
Molecules ; 27(19)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36235222

RESUMO

Human glioblastoma multiforme (GBM) is one of the most malignant brain tumors, with a high mortality rate worldwide. Conventional GBM treatment is now challenged by the presence of the blood-brain barrier (BBB), drug resistance, and post-treatment adverse effects. Hence, developing bioactive compounds isolated from plant species and identifying molecular pathways in facilitating effective treatment has become crucial in GBM. Based on pharmacodynamic studies, andrographolide has sparked the interest of cancer researchers, who believe it may alleviate difficulties in GBM therapy; however, it still requires further study. Andrographolide is a bicyclic diterpene lactone derived from Andrographis paniculata (Burm.f.) Wallich ex Nees that has anticancer properties in various cancer cell lines. The present study aimed to evaluate andrographolide's anticancer effectiveness and potential molecular pathways using a DBTRG-05MG cell line. The antiproliferative activity of andrographolide was determined using the WST-1 assay, while scratch assay and clonogenic assay were used to evaluate andrographolide's effectiveness against the cancer cell line by examining cell migration and colony formation. Flowcytometry was also used to examine the apoptosis and cell cycle arrest induced by andrographolide. The mRNA and protein expression level involved in the ERK1/2/c-Myc/p53 signaling pathway was then assessed using qRT-PCR and Western blot. The protein-protein interaction between c-Myc and p53 was determined by a reciprocal experiment of the co-immunoprecipitation (co-IP) using DBTRG-05MG total cell lysate. Andrographolide significantly reduced the viability of DBTRG-05MG cell lines in a concentration- and time-dependent manner. In addition, scratch and clonogenic assays confirmed the effectiveness of andrographolide in reducing cell migration and colony formation of DBTRG-05MG, respectively. Andrographolide also promoted cell cycle arrest in the G2/M phase, followed by apoptosis in the DBTRG-05MG cell line, by inducing ERK1/2, c-Myc, and p53 expression at the mRNA level. Western blot results demonstrated that c-Myc overexpression also increased the production of the anti-apoptotic protein p53. Our findings revealed that c-Myc and p53 positively interact in triggering the apoptotic signaling pathway. This study successfully discovered the involvement of ERK1/2/c-Myc/p53 in the suppression of the DBTRG-05MG cell line via cell cycle arrest followed by the apoptosis signaling pathway following andrographolide treatment.


Assuntos
Diterpenos , Glioblastoma , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Diterpenos/farmacologia , Diterpenos/uso terapêutico , Pontos de Checagem da Fase G2 do Ciclo Celular , Glioblastoma/metabolismo , Humanos , Lactonas/farmacologia , Sistema de Sinalização das MAP Quinases , RNA Mensageiro/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
4.
Membranes (Basel) ; 12(4)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35448367

RESUMO

Amoebiasis is the third most common parasitic cause of morbidity and mortality, particularly in countries with poor hygienic settings in central and south America, Africa, and India. This disease is caused by a protozoan parasite, namely Entamoeba histolytica, which infects approximately 50 million people worldwide, resulting in 70,000 deaths every year. Since the 1960s, E. histolytica infection has been successfully treated with metronidazole. However, there are drawbacks to metronidazole therapy: the side effects, duration of treatment, and need for additional drugs to prevent transmission. Previous interdisciplinary studies, including biophysics, bioinformatics, chemistry, and, more recently, lipidomics studies, have increased biomembranes' publicity. The biological membranes are comprised of a mixture of membrane and cytosolic proteins. They work hand in hand mainly at the membrane part. They act as dedicated platforms for a whole range of cellular processes, such as cell proliferation, adhesion, migration, and intracellular trafficking, thus are appealing targets for drug treatment. Therefore, this review aims to observe the updated trend of the research regarding the biological membranes of E. histolytica from 2015 to 2021, which may help further research regarding the drug targeting the biological membrane.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa