Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Anal Chem ; 96(13): 5282-5288, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38513049

RESUMO

Single nanochannels show unique transport properties due to nanoconfinement. It has been demonstrated that at submillimolar concentrations of divalent cations, a nanoprecipitation reaction can occur in nanochannels. Although several reports have shown, described, and modeled the nanoprecipitation process, no further advantages have been taken from this phenomenon. Here, we show that the nanoprecipitation reaction can be incorporated into enzyme-modified nanochannels to enhance the performance of small-molecule biosensors via in situ amplification reactions. Contrary to the working principle of previous enzymatic nanofluidic biosensors, the nanofluidic biosensor described in this work operates on the basis of concerted functions: pH-shifting enzymatic activity and nanoprecipitation. We show that the simple addition of Ca2+ and Mg2+ ions in the working analyte solution containing urea can lower the detection limit from the nanometer to the subnanometer regime and modulate the dynamic linear range. This approach enables the implementation of more sensitive real-time nanofluidic detection methods without increasing the complexity of the nanofluidic platform or the sensing approach. We envision that the integration of concerted functions in nanofluidic architectures will play a key role in expanding the use of these nanoscale devices for analytical purposes.


Assuntos
Técnicas Biossensoriais , Nanotecnologia
2.
Anal Chem ; 96(15): 5832-5842, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38573917

RESUMO

Chronic kidney disease is one of the major health issues worldwide. However, diagnosis is now highly centralized in large laboratories, resulting in low access to patient monitoring and poor personalized treatments. This work reports the development of a graphene-based lab-on-a-chip (G-LOC) for the digital testing of renal function biomarkers in serum and saliva samples. G-LOC integrates multiple bioelectronic sensors with a microfluidic system that enables multiplex self-testing of urea, potassium, sodium, and chloride. The linearity, limit of detection (LOD), accuracy, and coefficient of variability (CV) were studied. Accuracy values higher than 95.5% and CV lower than 9% were obtained for all of the biomarkers. The analytical performance was compared against three reference lab benchtop analyzers by measuring healthy- and renal-failure-level samples of serum. From receiver operating characteristic (ROC) plots, sensitivities (%) of 99.7, 97.6, 99.1, and 89.0 were obtained for urea, potassium, sodium, and chloride, respectively. Then, the test was evaluated in noninvasive saliva samples and compared against reference methods. Correlation and Bland-Altman plots showed good correlation and agreement of the G-LOC with the reference methods. It is noteworthy that the precision of G-LOC was similar to better than benchtop lab analyzers, with the advantage of being highly portable. Finally, a user testing study was conducted. The analytical performance obtained with untrained volunteers was similar to that obtained with trained chemists. Additionally, based on a user experience survey, G-LOC was found to have very simple usability and would be suitable for at-home diagnostics.


Assuntos
Grafite , Nefropatias , Humanos , Cloretos , Autoteste , Dispositivos Lab-On-A-Chip , Rim , Nefropatias/diagnóstico , Biomarcadores , Ureia , Potássio , Sódio
3.
Soft Matter ; 19(11): 2013-2041, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36811333

RESUMO

The complexation of polyelectrolytes with other oppositely charged structures gives rise to a great variety of functional materials with potential applications in a wide spectrum of technological fields. Depending on the assembly conditions, polyelectrolyte complexes can acquire different macroscopic configurations such as dense precipitates, nanosized colloids and liquid coacervates. In the past 50 years, much progress has been achieved to understand the principles behind the phase separation induced by the interaction of two oppositely charged polyelectrolytes in aqueous solutions, especially for symmetric systems (systems in which both polyions have similar molecular weight and concentration). However, in recent years, the complexation of polyelectrolytes with alternative building blocks such as small charged molecules (multivalent inorganic species, oligopeptides, and oligoamines, among others) has gained attention in different areas. In this review, we discuss the physicochemical characteristics of the complexes formed by polyelectrolytes and multivalent small molecules, putting a special emphasis on their similarities with the well-known polycation-polyanion complexes. In addition, we analyze the potential of these complexes to act as versatile functional platforms in various technological fields, such as biomedicine and advanced materials engineering.

4.
Nanotechnology ; 34(47)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37567153

RESUMO

The layer-by-layer (LbL) technique has been proven to be one of the most versatile approaches in order to fabricate functional nanofilms. The use of simple and inexpensive procedures as well as the possibility to incorporate a very wide range of materials through different interactions have driven its application in a wide range of fields. On the other hand, field-effect transistors (FETs) are certainly among the most important elements in electronics. The ability to modulate the flowing current between a source and a drain electrode via the voltage applied to the gate electrode endow these devices to switch or amplify electronic signals, being vital in all of our everyday electronic devices. In this topical review, we highlight different research efforts to engineer field-effect transistors using the LbL assembly approach. We firstly discuss on the engineering of the channel material of transistors via the LbL technique. Next, the deposition of dielectric materials through this approach is reviewed, allowing the development of high-performance electronic components. Finally, the application of the LbL approach to fabricate FETs-based biosensing devices is also discussed, as well as the improvement of the transistor's interfacial sensitivity by the engineering of the semiconductor with polyelectrolyte multilayers.

5.
Anal Chem ; 94(40): 13820-13828, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36170602

RESUMO

The interaction between polyamines and phosphate species is found in a wide range of biological and abiotic systems, yielding crucial consequences that range from the formation of supramolecular colloids to structure determination. In this work, the occurrence of phosphate-amino interactions is evidenced from changes in the electronic response of graphene field effect transistors (gFETs). First, the surface of the transistors is modified with poly(allylamine), and the effect of phosphate binding on the transfer characteristics is interpreted in terms of its impact on the surface charge density. The electronic response of the polyamine-functionalized gFETs is shown to be sensitive to the presence of different phosphate anions, such as orthophosphate, adenosine triphosphate, and tripolyphosphate, and a simple binding model is developed to explain the dependence of the shift of the Dirac point potential on the phosphate species concentration. Afterward, the impact of phosphate-amino interactions on the immobilization of enzymes to polyamine-modified graphene surfaces is investigated, and a decrease in the amount of anchored enzyme as the phosphate concentration increases is found. Finally, multilayer polyamine-urease biosensors are fabricated while increasing the phosphate concentration in the enzyme solution, and the sensing properties of the gFETs toward urea are evaluated. It is found that the presence of simple phosphate anions alters the nanoarchitecture of the polyelectrolyte-urease assemblies, with direct implications on urea sensing.


Assuntos
Alilamina , Técnicas Biossensoriais , Grafite , Trifosfato de Adenosina , Ânions , Grafite/química , Fosfatos , Poliaminas , Polieletrólitos , Transistores Eletrônicos , Ureia , Urease/química
6.
Langmuir ; 38(49): 15226-15233, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36454626

RESUMO

Multiphase aqueous-organic systems where a bicontinuous phase is in equilibrium with an excess organic and aqueous phase find various applications in industry. These systems─also known as Winsor III─are complex not only for the different phases that develop therein but also because they are multicomponent systems. In this work, we explore for the first time the use of a benchtop low-field single-sided NMR to determine the species distribution in Winsor III systems. The proposed methodology provides information at macroscopic and microscopic levels. In particular, we show the use of single-sided NMR to determine the phases' dimensions and the species distribution in a polymer-based bicontinuous system. The phases' dimensions and limits can be resolved with micrometric precision and are indicative of the bicontinuous phase stability. The species distribution is determined by means of spatially resolved NMR relaxation and diffusion experiments. It was observed that the salinity of the aqueous phase also impacts the species distribution in the bicontinuous system. Experiments show that the additive and the polymer are mainly located in the bicontinuous phase. As the salinity of the aqueous phase increases, the amount of organic components in the bicontinuous phase decreases as a consequence of the species distribution in the system. This influences the total amount of recovered organic liquid from the organic phase. The information is obtained in a relatively fast experiment and is relevant to the system's possible applications, such as enhanced oil recovery (EOR). This methodology is not only circumscribed to its application in EOR but can also be applied to the study of any emulsion or microemulsion systems without sample size or geometry constraints.

7.
Soft Matter ; 17(20): 5240-5247, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33949590

RESUMO

Redox mediators are pivotal players in the electron transfer process between enzymes and electrodes. We present an alternative approach for redox mediation based on branched polyethyleneimine (BPEI) modified with an osmium complex. This redox polyelectrolyte is crosslinked with phosphate to produce colloidal particles with a diameter of ca. 1 µm, which, combined with glucose oxidase (GOx), can form electroactive assemblies through either layer by layer assembly (LbL) or one-pot drop-casting (OPDC). The addition of NaCl to these colloidal systems induces the formation of films that otherwise poorly grow, presenting an outstanding catalytic current. The system was tested as a bioanode delivering a power output of 148 µW per nmol of mediator. These results are explained in terms of the interactions of the ions with the polyelectrolyte and represent a new route for the development of bioelectrochemical devices involving redox mediators and enzymes.


Assuntos
Fontes de Energia Bioelétrica , Eletrodos , Enzimas Imobilizadas/metabolismo , Glucose , Glucose Oxidase/metabolismo , Oxirredução , Polieletrólitos
8.
J Am Chem Soc ; 142(27): 11709-11716, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32407629

RESUMO

By combining surface plasmon resonance (SPR) and electrolyte gated field-effect transistor (EG-FET) methods in a single analytical device we introduce a novel tool for surface investigations, enabling simultaneous measurements of the surface mass and charge density changes in real time. This is realized using a gold sensor surface that simultaneously serves as a gate electrode of the EG-FET and as the SPR active interface. This novel platform has the potential to provide new insights into (bio)adsorption processes on planar solid surfaces by directly relating complementary measurement principles based on (i) detuning of SPR as a result of the modification of the interfacial refractive index profile by surface adsorption processes and (ii) change of output current as a result of the emanating effective gate voltage modulations. Furthermore, combination of the two complementary sensing concepts allows for the comparison and respective validation of both analytical techniques. A theoretical model is derived describing the mass uptake and evolution of surface charge density during polyelectrolyte multilayer formation. We demonstrate the potential of this combined platform through the observation of layer-by-layer assembly of PDADMAC and PSS. These simultaneous label-free and real-time measurements allow new insights into complex processes at the solid-liquid interface (like non-Fickian ion diffusion), which are beyond the scope of each individual tool.

9.
Chemistry ; 26(11): 2456-2463, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31889346

RESUMO

Polyamine-salt aggregates (PSA) are biomimetic soft materials that have attracted great attention due to their straightforward fabrication methods, high drug-loading efficiencies, and attractive properties for pH-triggered release. Herein, a simple and fast multicomponent self-assembly process was used to construct cross-linked poly(allylamine hydrochloride)/phosphate PSAs (hydrodynamic diameter of 360 nm) containing glucose oxidase enzyme, as a glucose-responsive element, and human recombinant insulin, as a therapeutic agent for the treatment of diabetes mellitus (GI-PSA). The addition of increasing glucose concentrations promotes the release of insulin due to the disassembly of the GI-PSAs triggered by the catalytic in situ formation of gluconic acid. Under normoglycemia, the GI-PSA integrity remained intact for at least 24 h, whereas hyperglycemic conditions resulted in 100 % cargo release after 4 h of glucose addition. This entirely supramolecular strategy presents great potential for the construction of smart glucose-responsive delivery nanocarriers.


Assuntos
Sistemas de Liberação de Medicamentos , Glucose/química , Insulina/administração & dosagem , Insulina/química , Nanocápsulas/química , Poliaminas/química , Reagentes de Ligações Cruzadas/química , Diabetes Mellitus/tratamento farmacológico , Gluconatos/química , Humanos , Insulina/farmacologia
10.
Chemistry ; 26(54): 12388-12396, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32672356

RESUMO

This work reports on a novel and versatile approach to control the structure of metal-organic framework (MOFs) films by using polymeric brushes as 3D primers, suitable for triggering heterogeneous MOF nucleation. As a proof-of-concept, this work explores the use of poly(1-vinylimidazole) brushes primer obtained via surface-initiated atom transfer radical polymerization (SI-ATRP) for the synthesis of Zn-based ZIF-8 MOF films. By modifying the grafting density of the brushes, smooth porous films were obtained featuring inherently hydrophobic microporosity arising from ZIF-8 structure, and an additional constructional interparticle mesoporosity, which can be employed for differential adsorption of targeted adsorbates. It was found that the grafting density modulates the constructional porosity of the films obtained; higher grafting densities result in more compact structures, while lower grafting density generates increasingly inhomogeneous films with a higher proportion of interparticle constructional porosity.

11.
Langmuir ; 36(8): 1965-1974, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32028769

RESUMO

Smart nanosystems that transduce external stimuli to physical changes are an inspiring challenge in current materials chemistry. Hybrid organic-inorganic materials attract great attention due to the combination of building blocks responsive to specific external solicitations. In this work, we present a sequential method for obtaining an integrated core-shell-brush nanosystem that transduces light irradiation into a particle size change through a thermoplasmonic effect. We first synthesize hybrid monodisperse systems made up of functionalized silica colloids covered with controllable thermoresponsive poly(N-isopropylacrylamide), PNIPAm, brushes, produced through radical photopolymerization. This methodology was successfully transferred to Au@SiO2 nanoparticles, leading to a core-shell-brush architecture, in which the Au core acts as a nanosource of heat; the silica layer, in turn, adapts the metal and polymer interfacial chemistries and can also host a fluorescent dye for bioimaging. Upon green LED irradiation, a light-to-heat conversion process leads to the shrinkage of the external polymer layer, as proven by in situ DLS. Our results demonstrate that modular hybrid nanosystems can be designed and produced with photothermo-physical transduction. These remote-controlled nanosystems present prospective applications in smart carriers, responsive bioscaffolds, or soft robotics.

12.
Soft Matter ; 16(4): 881-890, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31942906

RESUMO

Negatively charged poly(N-isopropylacrylamide-co-methacrylic acid) (P(NIPAm-co-MAA)) microgels undergo size changes in response to changes in temperature and pH. Complexation of these microgels with positively charged polyelectrolytes can greatly affect their physical properties and their capacity for encapsulating active molecules. Here we study the interaction between (P(NIPAm-co-MAA)) microgels and a model positively charged polyelectrolyte, poly allylamine hydrochloride (PAH), with different molecular weights. Experiments were conducted at temperatures below and above the lower critical solution temperature (LCST) of the microgel (30-32 °C), at 20 and 40 °C, respectively, and for PAH at molecular weights of 15, 50, and 140 kDa. Below the LCST, dynamic light scattering and zeta potential measurements with molecular simulation show that for the 15 kDa PAH there is preferential accumulation of PAH inside the microgel, whereas for the higher molecular weight PAH, the polyelectrolyte deposits mainly on the microgel surface. Above the LCST, PAH is preferentially located on the surface of the microgels for all molecular weights studied as a result of charge segregation in the hydrogels. Confocal scanning laser microscopy and flow cytometry were used to quantify rhodamine labelled PAH associated with the microgel. Isothermal titration calorimetry studies give insight into the thermodynamics of the interaction of PAH with the hydrogels, and how this interaction is affected by the molecular weight of PAH. Finally, microgels with encapsulated doxorubicin were exposed to PAH, revealing that the drug is displaced from the microgel by the PAH chains.

13.
Anal Bioanal Chem ; 412(14): 3299-3315, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32107572

RESUMO

Spectroscopy with planar optical waveguides is still an active field of research for the quantitative analysis of various supramolecular surface architectures and processes, and for applications in integrated optical chip communication, direct chemical sensing, etc. In this contribution, we summarize some recent development in optical waveguide spectroscopy using nanoporous thin films as the planar substrates that can guide the light just as well as bulk thin films. This is because the nanoporosity is at a spacial length-scale that is far below the wavelength of the guided light; hence, it does not lead to an enhanced scattering or additional losses of the optical guided modes. The pores have mainly two effects: they generate an enormous inner surface (up to a factor of 100 higher than the mere geometric dimensions of the planar substrate) and they allow for the exchange of material and charges between the two sides of the solid thin film. We demonstrate this for several different scenarios including anodized aluminum oxide layers for the ultrasensitive determination of the refractive index of fluids, or the label-free detection of small analytes binding from the pore inner volume to receptors immobilized on the pore surface. Using a thin film of Ti metal for the anodization results in a nanotube array offering an even further enhanced inner surface and the possibility to apply electrical potentials via the resulting TiO2 semiconducting waveguide structure. Nanoporous substrates fabricated from SiNx thin films by colloid lithography, or made from SiO2 by e-beam lithography, will be presented as examples where the porosity is used to allow for the passage of ions in the case of tethered lipid bilayer membranes fused on top of the light-guiding layer, or the transport of protons through membranes used in fuel cell applications. The final example that we present concerns the replication of the nanopore structure by polymers in a process that leads to a nanorod array that is equally well suited to guide the light as the mold; however, it opens a totally new field for integrated optics formats for direct chemical and biomedical sensing with an extension to even molecularly imprinted structures. Graphical abstract.

14.
Phys Chem Chem Phys ; 22(14): 7440-7450, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32215420

RESUMO

Polyamine-salt aggregates have become promising soft materials in nanotechnology due to their easy preparation process and pH-responsiveness. Here, we report the use of hexacyanoferrate(ii) and hexacyanoferrate(iii) as electroactive crosslinking agents for the formation of nanometer-sized redox-active polyamine-redox-salt aggregates (rPSA) in bulk suspension. This nanoplatform can be selectively assembled or disassembled under different stimuli such as redox environment, pH and ionic strength. By changing the charge of the building blocks, external triggers allow switching the system between two phase states: aggregate-free solution or colloidal rPSA dispersion. The stimuli-activated modulation of the assembly/disassembly processes opens a path to exploit rPSA in technologies based on smart nanomaterials.

15.
Chem Soc Rev ; 48(3): 814-849, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30543263

RESUMO

The discovery and development of novel approaches, materials and manufacturing processes in the field of energy are compelling increasing recognition as a major challenge for contemporary societies. The performance and lifetime of energy devices are critically dependent on nanoscale interfacial phenomena. From the viewpoint of materials design, the improvement of current technologies inevitably relies on gaining control over the complex interface between dissimilar materials. In this sense, interfacial nanoarchitectonics with polymer brushes has seen growing interest due to its potential to overcome many of the limitations of energy storage and conversion devices. Polymer brushes offer a broad variety of resources to manipulate interfacial properties and gain molecular control over the synergistic combination of materials. Many recent examples show that the rational integration of polymer brushes in hybrid nanoarchitectures greatly improves the performance of energy devices in terms of power density, lifetime and stability. Seen in this light, polymer brushes provide a new perspective from which to consider the development of hybrid materials and devices with improved functionalities. The aim of this review is therefore to focus on what polymer brush-based solutions can offer and to show how the practical use of surface-grafted polymer layers can improve the performance and efficiency of fuel cells, lithium-ion batteries, organic radical batteries, supercapacitors, photoelectrochemical cells and photovoltaic devices.

16.
Chemphyschem ; 20(8): 1044-1053, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30950152

RESUMO

Ionically crosslinked poly(allylamine)/phosphate (PAH/Pi) colloids consist of self-assembled nanostructures stabilized by supramolecular interactions. Under physiological conditions, these interactions should be present at high ionic strength and only in a narrow pH window to be effective as drug delivery agents. In this work we study the effect of the pH and ionic strength in the chemical behaviour of inorganic phosphate (Pi), poly(allylamine hydrochloride) (PAH) and their mixture in aqueous solution (PAH-Pi). By combination of experimental measurements and a theoretical model, we demonstrate that the driving force that leads to the formation of colloids is the electrostatic pairing between the positively charged amino groups in PAH and negatively charged HPO42- ions. Increasing the ionic strength of the system by addition of KCl weakens the PAH-Pi interactions and narrows the pH stability window from 4 to 1.8 pH units. In addition, a fully reversible system was obtained in which the colloids assemble and disassemble by changing the pH between 6.8 and 7.1 at high ionic strength, making them suitable for use as pH-responsive nanocarriers.

17.
Langmuir ; 35(24): 8038-8044, 2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31094531

RESUMO

The reversible control of the graphene Dirac point using external chemical stimuli is of major interest in the development of advanced electronic devices such as sensors and smart logic gates. Here, we report the coupling of chemoresponsive polymer brushes to reduced graphene oxide (rGO)-based field-effect transistors to modulate the graphene Dirac point in the presence of specific divalent cations. Poly[2-(methacryloyloxy)ethyl] phosphate (PMEP) brushes were grown on the transistor channel by atom transfer radical polymerization initiated from amine-pyrene linkers noncovalently attached to rGO surfaces. Our results show an increase in the Dirac point voltage due to electrostatic gating effects upon the specific binding of Ca2+ and Mg2+ to the PMEP brushes. We demonstrate that the electrostatic gating is reversibly controlled by the charge density of the polymer brushes, which depends on the divalent cation concentration. Moreover, a theoretical formalism based on the Grahame equation and a Langmuir-type binding isotherm is presented to obtain the PMEP-cation association constant from the experimental data.

18.
Langmuir ; 35(19): 6279-6287, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-30990724

RESUMO

Mesoporous oxide thin films (MOTF) present very high surface areas and highly controlled monodisperse pores in the nanometer range. These features spurred their possible applications in separation membranes and permselective electrodes. However, their performance in real applications is limited by their reactivity. Here, we perform a basic study of the stability of MOTF toward dissolution in aqueous media using a variety of characterization techniques. In particular, we focus in their stability behavior under the influence of ionic strength, adsorption of electrochemical probes, and applied electrode potential. Mesoporous silica thin films present a limited chemical stability after electrochemical cycling, particularly under high ionic strength, due to their high specific surface area and the interactions between the electrochemical probes and the surface. In contrast, TiO2 or Si0.9Zr0.1O2 matrices present higher stability; thus, they are an adequate alternative to produce accessible, sensitive, and robust permselective electrodes or membranes that perform under a wide variety of conditions.

19.
Soft Matter ; 15(7): 1640-1650, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30676599

RESUMO

Supramolecular self-assembly of molecular building blocks represents a powerful "nanoarchitectonic" tool to create new functional materials with molecular-level feature control. Here, we propose a simple method to create tunable phosphate/polyamine-based films on surfaces by successive assembly of poly(allylamine hydrochloride) (PAH)/phosphate anions (Pi) supramolecular networks. The growth of the films showed a great linearity and regularity with the number of steps. The coating thickness can be easily modulated by the bulk concentration of PAH and the deposition cycles. The PAH/Pi networks showed chemical stability between pH 4 and 10. The transport properties of the surface assemblies formed from different deposition cycles were evaluated electrochemically by using different redox probes in aqueous solution. The results revealed that either highly permeable films or efficient anion transport selectivity can be created by simply varying the concentration of PAH. This experimental evidence indicates that this new strategy of supramolecular self-assembly can be useful for the rational construction of single polyelectrolyte nanoarchitectures with multiple functionalities.

20.
Phys Chem Chem Phys ; 21(41): 22947-22954, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31598616

RESUMO

Layer by layer assembly of polyelectrolytes with proteins is a convenient tool for the development of functional biomaterials. Most of the studies presented in the literature are based on the electrostatic interaction between components of opposite charges, limiting the assembly possibilities. However, this process can be tuned by modifying the environment where the main constituents are dissolved. In this work, the electron transfer behavior between an electroactive polyelectrolyte (polyallylamine derivatized with an osmium complex) and a redox enzyme (glucose oxidase) is studied by assembling them in the presence of phosphate ions at different ionic strengths. Our results show that the environment from which the assembly is constructed has a significant effect on the electrochemical response. Notably, the polyelectrolyte dissolved in the presence of phosphate at high ionic strength presents a globular structure which is preserved after adsorption with substantial effects on the buildup of the multilayer system, improving the electron transfer process through the film.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa