RESUMO
Circovirids have a circular single-stranded DNA genome packed into a small icosahedral capsid. They are classified within two genera, Circovirus and Cyclovirus, in the family Circoviridae (phylum Cressdnaviricota, class Arfiviricetes, order Cirlivirales). Over the last five years, a number of new circovirids have been identified, and, as a result, 54 new species have been created for their classification based on the previously established species demarcation criterion, namely, that viruses classified into different species share less than 80% genome-wide pairwise sequence identity. Of note, one of the newly created species includes a circovirus that was identified in human hepatocytes and suspected of causing liver damage. Furthermore, to comply with binomial species nomenclature, all new and previously recognized species have been (re)named in binomial format with a freeform epithet. Here, we provide a summary of the properties of circovirid genomes and their classification as of June 2024 (65 species in the genus Circovirus and 90 species in the genus Cyclovirus). Finally, we provide reference datasets of the nucleotide and amino acid sequences representing each of the officially recognized circovirid species to facilitate further classification of newly discovered members of the Circoviridae.
Assuntos
Circoviridae , Genoma Viral , Filogenia , Circoviridae/genética , Circoviridae/classificação , Circoviridae/isolamento & purificação , Humanos , DNA Viral/genética , AnimaisRESUMO
The authors aimed to investigate eight strains of Escherichia coli (E. coli) strains from Hungarian layer flocks for antimicrobial resistance genes (ARG), using metagenomic methods. The strains were isolated from cloacal swabs of healthy adult layers. This study employed shotgun sequencing-based genetic and bioinformatic analysis along with determining phenotypic minimum inhibitory concentrations. A total of 59 ARGs were identified in the eight E. coli isolates, carrying ARGs against 15 groups of antibiotics. Among these, 28 ARGs were identified as transferable. Specifically, four ARGs were plasmid-derived, 18 ARGs were phage-derived and an additional six ARGs were predicted to be mobile, contributing to their mobility and potential spread between bacteria.
Assuntos
Escherichia coli , Genes Bacterianos , Animais , Escherichia coli/genética , Hungria/epidemiologia , Antibacterianos/farmacologia , BactériasRESUMO
OBJECTIVES: Hepatitis E virus (HEV) has recently become endemic in Europe, however, it is often a remnant neglected by clinicians as the causative agent of acute and chronic hepatitis and is often misdiagnosed as a drug-induced liver injury. The infection rate in European pig farms is estimated to be around 15-20%, therefore, the primary source of HEV infections might be poorly prepared pork meat. As HEV infections may occur more often in clinical practice than previously thought, the present paper aims to analyse the seroprevalence of HEV in patients with acute hepatitis over a period of 14 years in Csongrád County, Hungary. METHODS: The sera of 4,270 hepatitis patients collected between 2004-2018 were tested for cumulative anti-HEV IgG/IgM. Furthermore, 170 IgM positive sera were tested for the presence of viral RNA by RT-qPCR. RESULTS: Between 2012-2018, the cumulative seroprevalence has increased 9.18 times, and between 2013-2018, IgM prevalence has increased 12.49 times. Viral RNA was detectable in 12.35% of IgM positive sera. CONCLUSION: The present paper presents data showing that the seroprevalence of hepatitis E virus has increased markedly over the course of the last decade in Hungary and in other European countries as well. The exact reason behind this phenomenon is yet to be determined. To assess the dynamics and the reason for this increase in prevalence, pan-European, multicentre studies should be conducted.
Assuntos
Vírus da Hepatite E , Hepatite E , Humanos , Animais , Suínos , Hungria , Estudos Soroepidemiológicos , RNA Viral , Imunoglobulina MRESUMO
Group A rotaviruses (RVAs) are a major cause of severe enteritis in humans and animals. RVAs have been identified in several animal species and their genetic diversity, the segmented nature of their RNA genome and the ability to spill over from one species to another can generate new RVA strains. In this study, we investigated the genome constellations of an unusual, rare, bovine RVA strain, G15P[21], identified from a farm with neonatal diarrhoea of calves in 2006. In parallel, the genome constellations of other RVA strains with different G/P types identified from the same farm in the same time span (2006-2008) were analysed. The genome constellation of strain K53 was G15-P[21]-I2-R2-C2-M2-A13-N2-T9-E2-H3 and was similar, overall, to that of the other bovine RVA strains (G6/10-P[11]-I2-R2-C2-M2-A13-N2-T6-E2-H3) with the exception of the NSP3 segment (T9 vs T6). This study describes RVA genomes with different genotype combinations isolated at a farm and also contributes to the understanding of the diversity and evaluation of rotavirus in a global context.
Assuntos
Infecções por Rotavirus , Rotavirus , Bovinos , Animais , Humanos , Recém-Nascido , Rotavirus/genética , Infecções por Rotavirus/veterinária , Fazendas , Genoma Viral , Filogenia , GenótipoRESUMO
Spinareoviridae is a large family of icosahedral viruses that are usually regarded as non-enveloped with segmented (9-12 linear segments) dsRNA genomes of 23-29 kbp. Spinareovirids have a broad host range, infecting animals, fungi and plants. Some have important pathogenic potential for humans (e.g. Colorado tick fever virus), livestock (e.g. avian orthoreoviruses), fish (e.g. aquareoviruses) and plants (e.g. rice ragged stunt virus and rice black streaked dwarf virus). This is a summary of the ICTV Report on the family Spinareoviridae, which is available at ictv.global/report/spinareoviridae.
Assuntos
Fungos , RNA de Cadeia Dupla , Animais , Humanos , Plantas , Especificidade de Hospedeiro , FilogeniaRESUMO
Sedoreoviridae is a large family of icosahedral viruses that are usually regarded as non-enveloped with segmented (10-12 linear segments) dsRNA genomes of 18-26 kbp. Sedoreovirids have a broad host range, infecting mammals, birds, crustaceans, arthropods, algae and plants. Some of them have important pathogenic potential for humans (e.g. rotavirus A), livestock (e.g. bluetongue virus) and plants (e.g. rice dwarf virus). This is a summary of the ICTV Report on the family Sedoreoviridae, which is available at ictv.global/report/sedoreoviridae.
Assuntos
Mamíferos , RNA de Cadeia Dupla , Animais , Aves , Genoma Viral , Humanos , Plantas , Vírion , Replicação ViralRESUMO
In this study, the complete genome of a novel polyomavirus detected in a great cormorant (Phalacrocorax carbo) was characterized. The 5133-bp-long genome of the cormorant polyomavirus has a genomic structure typical of members of the genus Gammapolyomavirus, family Polyomaviridae, containing open reading frames encoding the large and small tumor antigens, viral proteins 1, 2, and 3, and the X protein. The large tumor antigen of the cormorant polyomavirus shares 45.6-50.4% amino acid sequence identity with the homologous sequences of other gammapolyomaviruses. These data, together with results of phylogenetic analysis, suggest that this cormorant polyomavirus should be considered the first member of a new species within the genus Gammapolyomavirus, for which we propose the name "Phalacrocorax carbo polyomavirus 1".
Assuntos
Polyomaviridae , Polyomavirus , Sequência de Aminoácidos , Animais , Aves , Filogenia , Polyomaviridae/genética , Polyomavirus/genéticaRESUMO
A novel gyrovirus was detected in an intestinal specimen of a common pheasant that died due to poult enteritis and mortality syndrome. The genome of the pheasant-associated gyrovirus (PAGyV) is 2353 nucleotides (nt) long and contains putative genes for the VP1, VP2, and VP3 proteins in an arrangement that is typical for gyroviruses. Gyrovirus-specific motifs were identified in both the coding region and the intergenic region of the PAGyV genome. The VP1 of PAGyV shares up to 67.6% pairwise nt sequence identity with reference sequences and forms a distinct branch in the phylogenetic tree. Thus, according to the recently described species demarcation criteria, PAGyV belongs to a novel species in the genus Gyrovirus, family Anelloviridae, for which we propose the name "Gyrovirus phaco 1".
Assuntos
Enterite , Gyrovirus , Animais , Enterite/veterinária , Genoma Viral/genética , Filogenia , Codorniz , Análise de Sequência de DNA , PerusRESUMO
Mycoplasma anserisalpingitidis is economically the most important pathogenic Mycoplasma species of waterfowl in Europe and Asia. The lack of commercially available vaccines against M. anserisalpingitidis had prompted this study with the aim to produce temperature-sensitive (ts+) clones as candidates for an attenuated live vaccine. The production of ts+ clones was performed by N-methyl-N'-nitro-N-nitrosoguanidine (NTG)-induced mutagenesis of Hungarian M. anserisalpingitidis field isolates. The clones were administered via eye-drop and intracloacally to 33-day-old geese. Colonization ability was examined by PCR and isolation from the trachea and cloaca, while the serological response of the birds was tested by ELISA. Pathological and histopathological examinations were performed in the eighth week after inoculation. Whole-genome sequence (WGS) analysis of the selected clone and its parent strain was also performed. NTG-treatment provided three ts+ mutants (MA177/1/11, MA177/1/12, MA271). MA271 was detected at the highest rate from cloacal (86.25%) and tracheal (30%) samples, while MA177/1/12 and MA271 elicited remarkable serological responses with 90% of the birds showing seroconversion. Re-isolates of MA271 remained ts+ throughout the experiment. Based on these properties, clone MA271 was found to be the most promising vaccine candidate. WGS analysis revealed 59 mutations in the genome of MA271 when compared to its parent strain, affecting both polypeptides involved in different cellular processes and proteins previously linked to bacterial fitness and virulence. Although further studies are needed to prove that MA271 is in all aspects a suitable vaccine strain, it is expected that this ts+ clone will contribute to the control of M. anserisalpingitidis infection.RESEARCH HIGHLIGHTS Three M. anserisalpingitidis ts+ vaccine candidates were produced by NTG-mutagenesis.Clone MA271 was able to colonize geese and induce a serological response.MA271 re-isolates remained ts+ during the 8-week-long experiment.WGS analysis revealed 59 mutations in the genome of MA271.
Assuntos
Infecções por Mycoplasma , Mycoplasma , Doenças das Aves Domésticas , Animais , Infecções por Mycoplasma/prevenção & controle , Infecções por Mycoplasma/veterinária , Doenças das Aves Domésticas/microbiologia , Temperatura , Galinhas/microbiologia , Vacinas Bacterianas , Mycoplasma/genética , Metilnitronitrosoguanidina , Células ClonaisRESUMO
Revealing the phylogenetic relationships of Candida krusei strains (sexual form Pichia kudriavzevii) is a prerequisite for understanding the evolution of its virulence-associated mechanisms and ecological lifestyles. Molecular phylogenetic analyses based on entire internal transcribed spacer region (ITS) and multilocus sequence typing (MLST) data were carried out with sequences available in public databases and Hungarian isolates from animals obtained for the study. The ITS haplotype network yielded a high frequency haplotype at the centre of the network (H1; n = 204) indicating that various selective pressure might resulted in population expansion from H1. MLST analysis identified three new genotypes among animal-derived isolates, therefore overall 203 sequence types were investigated to determine the population structure of C. krusei. The most commonly encountered sequence types were ST 17 and ST 67. Phylogenetic analyses showed diverse genetic construction of C. krusei population. Evidence of potential recombination events were also observed that might play some role in high intraspecies genetic variability among strains, however, the limited data of C. krusei genotypes from different countries prevented us to identify accurate evolutionary routes of commensal and pathogenic strains or species-specific lineages. Further expansion of C. krusei MLST database may promote the better understanding of the mixed evolutionary history of this species.
Assuntos
Candida , Pichia , Tipagem de Sequências Multilocus , FilogeniaRESUMO
Boid inclusion body disease (BIBD) is a severe and transmissible disease of snakes worldwide. Reptarenaviruses have been identified as the aetiological agents of BIBD. We determined the almost complete genome sequence of an arenavirus detected in a female red-tailed boa that had succumbed in a private collection in Hungary. We used a combination of next generation sequencing and Sanger sequencing methods. Based on the analysis of the obtained sequence data, the virus, tentatively named Coldvalley virus, seemed to belong to the Reptarenavirus genus of the Arenaviridae family. This classification was confirmed by the genome structure (bisegmented single-stranded RNA) characteristic of the genera Mammarenavirus and Reptarenavirus. The pairwise comparison of the nucleotide and amino acid sequences, as well as the topology of the maximum likelihood phylogenetic trees, suggested that the newly-characterised Coldvalley virus can be classified into the species Rotterdam reptarenavirus.
RESUMO
We determined the genomic sequence of a Ukrainian strain of fowl adenovirus B (FAdV-B). The isolate (D2453/1) shared 97.2% to 98.4% nucleotide sequence identity with other viruses belonging to the species Fowl aviadenovirus B. Marked genetic divergence was seen in the hexon, fiber, and ORF19 genes, and phylogenetic analysis suggested that recombination events had occurred in these regions. Our analysis revealed mosaicism in the recombination patterns, a finding that has also been described in the genomes of strains of FAdV-D and FAdV-E. The shared recombination breakpoints, affecting the same genomic regions in viruses belonging to different species, suggest that similar selection mechanisms are acting on the key neutralization antigens and epitopes in viruses of different FAdV species.
Assuntos
Infecções por Adenoviridae/veterinária , Aviadenovirus/genética , Galinhas/virologia , Genoma Viral/genética , Doenças das Aves Domésticas/virologia , Infecções por Adenoviridae/virologia , Animais , Aviadenovirus/classificação , Mapeamento Cromossômico , DNA Viral/genética , Variação Genética , Recombinação Homóloga , Filogenia , Proteínas Virais/genéticaRESUMO
Routine culturing of goose haemorrhagic polyomavirus (GHPV) is cumbersome, and limited data are available about its replication and gene expression profile. In this study, goose embryo fibroblast cells were infected with GHPV for temporal measurement of the viral genome copy number and mRNA levels with quantitative PCR. Accumulation of small and large tumour antigen-encoding mRNAs was detected as early as 9 hours post-infection (hpi), while high level expression of the capsid protein encoding VP1-VP3, and ORF-X mRNAs was first detected at 24 hpi. Elevation of GHPV genome copy number was noted at 48 hpi. The results indicate that the gene expression profile of GHPV is similar to that described for mammalian polyomaviruses.RESEARCH HIGHLIGHTS GHPV was propagated in culture of primary goose embryo fibroblast cells.The transcription commenced before the onset of viral DNA replication.The transcription patterns of GHPV and mammalian polyomaviruses were comparable.
Assuntos
Doenças das Aves/virologia , Gansos/virologia , Infecções por Polyomavirus/veterinária , Polyomavirus , Animais , Replicação do DNA , DNA Viral , Polyomavirus/genética , RNA Mensageiro/genética , Transcriptoma , Replicação ViralRESUMO
The tick-borne pathogen Powassan virus is a rare cause of encephalitis in North America and the Russian Far East. The number of documented cases described since the discovery of Powassan virus in 1958 may be <150, although detection of cases has increased over the past decade. In the United States, the incidence of Powassan virus infections expanded from the estimated 1 case per year prior to 2005 to 10 cases per year during the subsequent decade. The increased detection rate may be associated with several factors, including enhanced surveillance, the availability of improved laboratory diagnostic methods, the expansion of the vector population, and, perhaps, altered human activities that lead to more exposure. Nonetheless, it remains unclear whether Powassan virus is indeed an emerging threat or if enzootic cycles in nature remain more-or-less stable with periodic fluctuations of host and vector population sizes. Despite the low disease incidence, the approximately 10% to 15% case fatality rate of neuroinvasive Powassan virus infection and the temporary or prolonged sequelae in >50% of survivors make Powassan virus a medical concern requiring the attention of public health authorities and clinicians. The medical importance of Powassan virus justifies more research on developing specific and effective treatments and prevention and control measures.
Assuntos
Encefalite Transmitida por Carrapatos/epidemiologia , Flavivirus , Doenças Transmitidas por Carrapatos/virologia , Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos/diagnóstico , Encefalite Transmitida por Carrapatos/prevenção & controle , Encefalite Transmitida por Carrapatos/virologia , Humanos , Fatores de RiscoRESUMO
The control of Mycoplasma hyorhinis infection relies mainly on antimicrobial therapy. However, the antibiotic susceptibility testing of the bacteria is usually not performed before applying the treatment, and thus therapeutic failures are not uncommon. In the case of M. hyorhinis, several antibiotic-resistance-related single nucleotide polymorphisms (SNPs) are known but assays for their detection have not been described yet. The aims of the present study were to investigate macrolide- and lincomycin-resistance-related SNPs in Hungarian M. hyorhinis isolates and to develop mismatch amplification mutation assays (MAMA) to detect the identified resistance markers. Minimal inhibitory concentrations (MIC) of different drugs and whole genome sequences of 37 M. hyorhinis isolates were used to find the resistance-related mutations. One MAMA assay was designed to detect the mutation of the 23S rRNA gene at nucleotide position 2058 (Escherichia coli numbering). For further evaluation, the assay was challenged with 17 additional isolates with available MIC data and 15 DNA samples from clinical specimens. The genotypes of the samples were in line with the MIC test results. The developed assay supports the practice of targeted antibiotic usage; hence it may indirectly reduce some bacterial resistance-related public health concerns.
Assuntos
Infecções por Mycoplasma , Mycoplasma hyorhinis , Animais , Antibacterianos/farmacologia , Bioensaio/veterinária , Farmacorresistência Bacteriana/genética , Lincomicina/farmacologia , Macrolídeos/farmacologia , Testes de Sensibilidade Microbiana/veterinária , Infecções por Mycoplasma/tratamento farmacológico , Infecções por Mycoplasma/veterináriaRESUMO
BACKGROUND: Mycoplasma anserisalpingitidis is a waterfowl pathogen that mainly infects geese, can cause significant economic losses and is present worldwide. With the advance of whole genome sequencing technologies, new methods are available for the researchers; one emerging methodology is the core genome Multi-Locus Sequence Typing (cgMLST). The core genome contains a high percentage of the coding DNA sequence (CDS) set of the studied strains. The cgMLST schemas are powerful genotyping tools allowing for the investigation of potential epidemics, and precise and reliable classification of the strains. Although whole genome sequences of M. anserisalpingitidis strains are available, to date, no cgMLST schema has been published for this species. RESULTS: In this study, Illumina short reads of 81 M. anserisalpingitidis strains were used, including samples from Hungary, Poland, Sweden, and China. Draft genomes were assembled with the SPAdes software and analysed with the online available chewBBACA program. User made modifications in the program enabled analysis of mycoplasmas and provided similar results as the conventional SeqSphere+ software. The threshold of the presence of CDS in the strains was set to 93% due to the quality of the draft genomes, resulting in the most accurate and robust schema. Three hundred thirty-one CDSs constituted our cgMLST schema (representing 42,77% of the whole CDS set of M. anserisalpingitidis ATCC BAA-2147), and a Neighbor joining tree was created using the allelic profiles. The correlation was observed between the strains' cgMLST profile and geographical origin; however, strains from the same integration but different locations also showed close relationship. Strains isolated from different tissue samples of the same animal revealed highly similar cgMLST profiles. CONCLUSIONS: The Neighbor joining tree from the cgMLST schema closely resembled the real-life spatial and temporal relationships of the strains. The incongruences between background data and the cgMLST profile in the strains from the same integration can be because of the higher probability of contacts between the flocks. This schema can help with the epidemiological investigation and can be used as a basis for further studies.
Assuntos
Genoma Bacteriano , Mycoplasma/classificação , Mycoplasma/genética , Animais , Gansos/microbiologia , Genótipo , Epidemiologia Molecular , Tipagem de Sequências Multilocus , Filogenia , Sequenciamento Completo do GenomaRESUMO
We determined the genomic sequence of a Newcastle disease virus (NDV) line obtained directly from the first NDV isolate, named Herts'33. This strain shared ≤ 90% nucleotide sequence identity with the NDV sequences available in the GenBank database, and formed a distinct branch in a phylogenetic tree. This branch may be considered to represent a separate NDV genotype. Our study indicates that investigation of the genomic sequences of old NDV strains that originated from the early outbreaks of Newcastle disease may alter the phylogenetic grouping of the NDV strains and provide data on the evolution of viral genomes over time.
Assuntos
Vírus da Doença de Newcastle/genética , Sequenciamento Completo do Genoma/métodos , Evolução Molecular , Genoma Viral , Técnicas de Genotipagem , Vírus da Doença de Newcastle/classificação , FilogeniaRESUMO
Mycoplasma gallisepticum causes respiratory diseases and reproduction disorders in turkeys and chickens. The infection has considerable economic impact due to reduced meat and egg production. Because elimination programmes are not feasible in a large number of poultry farms, vaccination remains the only effective measure of disease control. Differentiating vaccine strains from field isolates is necessary in the control of vaccination programmes and diagnostics. The aim of this study was to develop a polymerase chain reaction based mismatch amplification mutation assay (MAMA) for the discrimination of K vaccine strain (K 5831, Vaxxinova Japan K.K.). After determining the whole genome sequence of the K strain, primers were designed to detect seven different vaccine-specific single nucleotide polymorphisms. After evaluating preliminary results, the MAMA-K-fruA test detecting a single guanine-adenine substitution within the fruA gene (G88A) was found to be the most applicable assay to distinguish the K vaccine strain from field isolates. The detected K strain-specific single nucleotide polymorphism showed genetic stability after serial passage in vitro, but this stability test should still be evaluated in vivo as well, investigating a large number of K strain re-isolates. The MAMA-K-fruA assay was tested on a total of 280 culture and field samples. The designed assay had 102 and 103 template copy number/µl sensitivity in melt-curve analysis based and agarose-gel based assays, respectively, and showed no cross reaction with other avian Mycoplasma species. The new MAMA provides a time- and cost-effective molecular tool for the control of vaccination programmes and for diagnostics.
Assuntos
Galinhas/microbiologia , Infecções por Mycoplasma/veterinária , Mycoplasma gallisepticum/genética , Polimorfismo de Nucleotídeo Único/genética , Doenças das Aves Domésticas/microbiologia , Perus/microbiologia , Animais , Vacinas Bacterianas/genética , Primers do DNA/genética , Mutação , Infecções por Mycoplasma/diagnóstico , Infecções por Mycoplasma/microbiologia , Infecções por Mycoplasma/prevenção & controle , Mycoplasma gallisepticum/imunologia , Mycoplasma gallisepticum/isolamento & purificação , Reação em Cadeia da Polimerase/veterinária , Doenças das Aves Domésticas/diagnóstico , Doenças das Aves Domésticas/prevenção & controleRESUMO
BACKGROUND: Mycoplasma anserisalpingitidis causes significant economic losses in the domestic goose (Anser anser) industry in Europe. As 95% of the global goose production is in China where the primary species is the swan goose (Anser cygnoides), it is crucial to know whether the agent is present in this region of the world. RESULTS: Purulent cloaca and purulent or necrotic phallus inflammation were observed in affected animals which represented 1-2% of a swan goose breeding flock (75,000 animals) near Guanghzou, China, in September 2019. From twelve sampled animals the cloaca swabs of five birds (three male, two female) were demonstrated to be M. anserisalpingitidis positive by PCR and the agent was successfully isolated from the samples of three female geese. Based on whole genome sequence analysis, the examined isolate showed high genetic similarity (84.67%) with the European isolates. The antibiotic susceptibility profiles of two swan goose isolates, determined by microbroth dilution method against 12 antibiotics and an antibiotic combination were also similar to the European domestic goose ones with tylvalosin and tiamulin being the most effective drugs. CONCLUSIONS: To the best of our knowledge this is the first description of M. anserisalpingitidis infection in swan goose, thus the study highlights the importance of mycoplasmosis in the goose industry on a global scale.
Assuntos
Infecções por Mycoplasma/veterinária , Mycoplasma/isolamento & purificação , Doenças das Aves Domésticas/microbiologia , Animais , Antibacterianos/farmacologia , China/epidemiologia , Cloaca/microbiologia , Feminino , Gansos , Masculino , Testes de Sensibilidade Microbiana/veterinária , Mycoplasma/genética , Infecções por Mycoplasma/epidemiologia , Infecções por Mycoplasma/microbiologia , Pênis/microbiologia , Sequenciamento Completo do GenomaRESUMO
The complete genomic sequence along with phylogenetic analyses of an adenovirus (AdV), isolated from a dead captive pygmy marmoset (Callithrix pygmaea) from a Hungarian zoo is reported. Earlier, based on the phylogenetic analysis of the sequence of a PCR-amplified fragment from the DNA polymerase gene, the pygmy marmoset AdV (PMAdV) has been reported to cluster closest to certain chiropteran AdVs. In the following years similar AdVs were discovered in additional mammalian hosts, including a skunk (Mephitis mephitis), African pygmy hedgehogs (Atelerix albiventris), North American porcupines (Erethizon dorsatum) and grey fox (Urocyon cinereoargenteus). After the full genome analysis of the skunk adenovirus (SkAdV-1), a novel species Skunk mastadenovirus A (SkAdV-A) has been established. The AdVs, originating from the African pygmy hedgehogs, have been found to belong to virus species SkAdV-A. Partial gene sequences from the porcupine AdVs have also implied their very close genetic relatedness to SkAdV-A. The complete genomic sequence of PMAdV, examined in this study, was found to share 99.83% nucleotide identity with SkAdV-1, thus unequivocally represents a genomic variant of SkAdV-1. The observation that viruses classifiable as SkAdV-A are able to infect and cause diseases in several, distantly related mammals seems to deserve further studies to elucidate the infection biology of this intriguing AdV.