Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Cell Sci ; 134(10)2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34013964

RESUMO

Myosin XIX (Myo19) is an actin-based motor that competes with adaptors of microtubule-based motors for binding to the outer mitochondrial transmembrane proteins Miro1 and Miro2 (collectively Miro, also known as RhoT1 and RhoT2, respectively). Here, we investigate which mitochondrial and cellular processes depend on the coordination of Myo19 and microtubule-based motor activities. To this end, we created Myo19-deficient HEK293T cells. Mitochondria in these cells were not properly fragmented at mitosis and were partitioned asymmetrically to daughter cells. Respiratory functions of mitochondria were impaired and ROS generation was enhanced. On a cellular level, cell proliferation, cytokinesis and cell-matrix adhesion were negatively affected. On a molecular level, Myo19 regulates focal adhesions in interphase, and mitochondrial fusion and mitochondrially associated levels of fission protein Drp1 and adaptor proteins dynactin and TRAK1 at prometaphase. These alterations were due to a disturbed coordination of Myo19 and microtubule-based motor activities by Miro.


Assuntos
Actinas , Miosinas , Actinas/genética , Actinas/metabolismo , Células HEK293 , Humanos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Miosinas/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
2.
Eur J Neurol ; 30(2): 511-526, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36260368

RESUMO

BACKGROUND AND PURPOSE: Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of disorders caused by mutations in at least 100 genes. However, approximately 60% of cases with axonal neuropathies (CMT2) still remain without a genetic diagnosis. We aimed at identifying novel disease genes responsible for CMT2. METHODS: We performed whole exome sequencing and targeted next generation sequencing panel analyses on a cohort of CMT2 families with evidence for autosomal recessive inheritance. We also performed functional studies to explore the pathogenetic role of selected variants. RESULTS: We identified rare, recessive variants in the MYO9B (myosin IX) gene in two families with CMT2. MYO9B has not yet been associated with a human disease. MYO9B is an unconventional single-headed processive myosin motor protein with signaling properties, and, consistent with this, our results indicate that a variant occurring in the MYO9B motor domain impairs protein expression level and motor activity. Interestingly, a Myo9b-null mouse has degenerating axons in sciatic nerves and optic nerves, indicating that MYO9B plays an essential role in both peripheral nervous system and central nervous system axons, respectively. The degeneration observed in the optic nerve prompted us to screen for MYO9B mutations in a cohort of patients with optic atrophy (OA). Consistent with this, we found compound heterozygous variants in one case with isolated OA. CONCLUSIONS: Novel or very rare variants in MYO9B are associated with CMT2 and isolated OA.


Assuntos
Doença de Charcot-Marie-Tooth , Miosinas , Animais , Humanos , Camundongos , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Mutação/genética , Linhagem , Fenótipo , Proteínas , Nervo Isquiático/patologia , Miosinas/genética
3.
Dev Dyn ; 251(11): 1897-1907, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36008362

RESUMO

BACKGROUND: During eye development the lens placode invaginates to form the lens pit. Further bending of lens epithelium and separation from ectoderm leads eventually to a spherical lens vesicle with enclosed extracellular fluid. Changes in epithelial morphology involve the actin cytoskeleton and its regulators. The myosin Myo9b is simultaneously an actin-based motor and Rho GTPase-activating protein that regulates actin cytoskeleton organization. Myo9b-deficient adult mice and embryos were analyzed for eye malformations and alterations in lens development. RESULTS: Myo9b-deficient mice showed a high incidence of microphthalmia and cataracts with occasional blepharitis. Formation of the lens vesicle during embryonic lens development was disordered in virtually all embryos. Lens placode invagination was less deep and gave rise to a conical structure instead of a spherical pit. At later stages either no lens vesicle was formed or a significantly smaller one that was not enclosed by the optic cup. Expression of the cell fate marker Pax6 was not altered. Staining of adherens junctions and F-actin was most intense at the tip of conical invaginations, suggesting that mechanical forces are not properly coordinated between epithelial cells that form the pit. CONCLUSIONS: Myo9b is a critical regulator of ocular lens vesicle morphogenesis during eye development.


Assuntos
Cristalino , Morfogênese , Miosinas , Animais , Camundongos , Actinas/fisiologia , Olho , Cristalino/embriologia , Miosinas/fisiologia
4.
J Biol Chem ; 296: 100136, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33268376

RESUMO

To migrate, cells assume a polarized morphology, extending forward with a leading edge with their trailing edge retracting back toward the cell body. Both cell extension and retraction critically depend on the organization and dynamics of the actin cytoskeleton, and the small, monomeric GTPases Rac and Rho are important regulators of actin. Activation of Rac induces actin polymerization and cell extension, whereas activation of Rho enhances acto-myosin II contractility and cell retraction. To coordinate migration, these processes must be carefully regulated. The myosin Myo9b, a Rho GTPase-activating protein (GAP), negatively regulates Rho activity and deletion of Myo9b in leukocytes impairs cell migration through increased Rho activity. However, it is not known whether cell motility is regulated by global or local inhibition of Rho activity by Myo9b. Here, we addressed this question by using Myo9b-deficient macrophage-like cells that expressed different recombinant Myo9b constructs. We found that Myo9b accumulates in lamellipodial extensions generated by Rac-induced actin polymerization as a function of its motor activity. Deletion of Myo9b in HL-60-derived macrophages altered cell morphology and impaired cell migration. Reintroduction of Myo9b or Myo9b motor and GAP mutants revealed that local GAP activity rescues cell morphology and migration. In summary, Rac activation leads to actin polymerization and recruitment of Myo9b, which locally inhibits Rho activity to enhance directional cell migration.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Miosinas/metabolismo , Pseudópodes/metabolismo , Movimento Celular/fisiologia , Células Cultivadas , Proteínas Ativadoras de GTPase/genética , Humanos , Miosinas/genética
5.
J Biol Chem ; 294(18): 7202-7218, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30737279

RESUMO

Whereas myosin 18B (Myo18B) is known to be a critical sarcomeric protein, the function of myosin 18A (Myo18A) is unclear, although it has been implicated in cell motility and Golgi shape. Here, we show that homozygous deletion (homozygous tm1a, tm1b, or tm1d alleles) of Myo18a in mouse is embryonic lethal. Reminiscent of Myo18b, Myo18a was highly expressed in the embryo heart, and cardiac-restricted Myo18a deletion in mice was embryonic lethal. Surprisingly, using Western blot analysis, we were unable to detect the known isoforms of Myo18A, Myo18Aα and Myo18Aß, in mouse heart using a custom C-terminal antibody. However, alternative anti-Myo18A antibodies detected a larger than expected protein, and RNA-Seq analysis indicated that a novel Myo18A transcript is expressed in mouse ventricular myocytes (and human heart). Cloning and sequencing revealed that this cardiac isoform, denoted Myo18Aγ, lacks the PDZ-containing N terminus of Myo18Aα but includes an alternative N-terminal extension and a long serine-rich C terminus. EGFP-tagged Myo18Aγ expressed in ventricular myocytes localized to the level of A-bands in sarcomeres, and Myo18a knockout embryos at day 10.5 exhibited disorganized sarcomeres with wavy thick filaments. We additionally generated myeloid-restricted Myo18a knockout mice to investigate the role of Myo18A in nonmuscle cells, exemplified by macrophages, which express more Myo18Aß than Myo18Aα, but no defects in cell shape, motility, or Golgi shape were detected. In summary, we have identified a previously unrecognized sarcomere component, a large novel isoform (denoted Myo18Aγ) of Myo18A. Thus, both members of class XVIII myosins are critical components of cardiac sarcomeres.


Assuntos
Miocárdio/metabolismo , Miosinas/metabolismo , Sarcômeros/metabolismo , Animais , Deleção de Genes , Genes Letais , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Camundongos Knockout , Miosinas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
6.
J Cell Sci ; 131(17)2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30111583

RESUMO

Mitochondrial distribution in cells is critical for cellular function and proper inheritance during cell division. In mammalian cells, mitochondria are transported predominantly along microtubules by kinesin and dynein motors that bind indirectly via TRAK1 and TRAK2 to outer mitochondrial membrane proteins Miro1 and Miro2 (Miro1/2). Here, using proximity labelling, we identified Miro1/2 as potential binding partners of myosin XIX (Myo19). Interaction studies show that Miro1 binds directly to a C-terminal fragment of the Myo19 tail region and that Miro1/2 recruit the Myo19 tail in vivo This recruitment is regulated by the nucleotide state of the N-terminal Rho-like GTPase domain of Miro1/2. Notably, Myo19 protein stability in cells depends on its association with Miro1/2. Downregulation of Miro1/2 or overexpression of the adaptor proteins TRAK1 and TRAK2 caused a reduction in Myo19 protein levels. Myo19 regulates the subcellular distribution of mitochondria, and downregulation, as well as overexpression, of Myo19 induced perinuclear collapse of mitochondria, phenocopying loss of the kinesin KIF5, dynein or their mitochondrial receptors Miro1/2. These results suggest that Miro1 and Miro2 coordinate microtubule- and actin-based mitochondrial movement.This article has an associated First Person interview with the first author of the paper.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Miosinas/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Dineínas/genética , Dineínas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Cinesinas/genética , Cinesinas/metabolismo , Mitocôndrias/genética , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Miosinas/química , Miosinas/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica , Domínios Proteicos , Proteínas rho de Ligação ao GTP/genética
7.
Adv Exp Med Biol ; 1239: 381-389, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32451867

RESUMO

Class IX myosins are simultaneously motor and signaling molecules. In addition to myosin class-specific functions of the tail region, they feature unique motor properties. Within their motor region they contain a long insertion with a calmodulin- and a F-actin-binding site. The rate-limiting step in the ATPase cycle is ATP hydrolysis rather than, typical for other myosins, the release of either product. This means that class IX myosins spend a large fraction of their cycle time in the ATP-bound state, which is typically a low F-actin affinity state. Nevertheless, class IX myosins in the ATP-bound state stochastically switch between a low and a high F-actin affinity state. Single motor domains even show characteristics of processive movement towards the plus end of actin filaments. The insertion thereby acts as an actin tether. The motor domain transports as intramolecular cargo a signaling Rho GTPase-activating protein domain located in the tail region. Rho GTPase-activating proteins catalyze the conversion of active GTP-bound Rho to inactive GDP-bound Rho by stimulating GTP hydrolysis. In cells, Rho activity regulates actin cytoskeleton organization and actomyosin II contractility. Thus, class IX myosins regulate cell morphology, cell migration, cell-cell junctions and membrane trafficking. These cellular functions affect embryonic development, adult organ homeostasis and immune responses. Human diseases associated with mutations in the two class IX myosins, Myo9a and Myo9b, have been identified, including hydrocephalus and congenital myasthenic syndrome in connection with Myo9a and autoimmune diseases in connection with Myo9b.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Miosinas/metabolismo , Transdução de Sinais , Actinas/metabolismo , Humanos , Ligação Proteica
8.
J Biol Chem ; 292(17): 7258-7273, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28289096

RESUMO

Macrophage filopodia, finger-like membrane protrusions, were first implicated in phagocytosis more than 100 years ago, but little is still known about the involvement of these actin-dependent structures in particle clearance. Using spinning disk confocal microscopy to image filopodial dynamics in mouse resident Lifeact-EGFP macrophages, we show that filopodia, or filopodia-like structures, support pathogen clearance by multiple means. Filopodia supported the phagocytic uptake of bacterial (Escherichia coli) particles by (i) capturing along the filopodial shaft and surfing toward the cell body, the most common mode of capture; (ii) capturing via the tip followed by retraction; (iii) combinations of surfing and retraction; or (iv) sweeping actions. In addition, filopodia supported the uptake of zymosan (Saccharomyces cerevisiae) particles by (i) providing fixation, (ii) capturing at the tip and filopodia-guided actin anterograde flow with phagocytic cup formation, and (iii) the rapid growth of new protrusions. To explore the role of filopodia-inducing Cdc42, we generated myeloid-restricted Cdc42 knock-out mice. Cdc42-deficient macrophages exhibited rapid phagocytic cup kinetics, but reduced particle clearance, which could be explained by the marked rounded-up morphology of these cells. Macrophages lacking Myo10, thought to act downstream of Cdc42, had normal morphology, motility, and phagocytic cup formation, but displayed markedly reduced filopodia formation. In conclusion, live-cell imaging revealed multiple mechanisms involving macrophage filopodia in particle capture and engulfment. Cdc42 is not critical for filopodia or phagocytic cup formation, but plays a key role in driving macrophage lamellipodial spreading.


Assuntos
Proteína Quinase CDC2/fisiologia , Miosinas/fisiologia , Fagocitose , Pseudópodes/metabolismo , Animais , Proteína Quinase CDC2/genética , Quimiotaxia , Deleção de Genes , Genótipo , Proteínas de Fluorescência Verde/metabolismo , Concentração de Íons de Hidrogênio , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Knockout , Microscopia Confocal , Mutação , Miosinas/genética , Miosinas/metabolismo , Fenótipo , Saccharomyces cerevisiae/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo
9.
J Immunol ; 192(8): 3559-68, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24646736

RESUMO

Directed migration of stimulated dendritic cells (DCs) to secondary lymphoid organs and their interaction with Ag-specific T cells is a prerequisite for the induction of primary immune responses. In this article, we show that murine DCs that lack myosin IXB (Myo9b), a motorized negative regulator of RhoA signaling, exhibit increased Rho signaling activity and downstream acto-myosin contractility, and inactivation of the Rho target protein cofilin, an actin-depolymerizing factor. On a functional level, Myo9b(-/-) DCs showed impaired directed migratory activity both in vitro and in vivo. Moreover, despite unaltered Ag presentation and costimulatory capabilities, Myo9b(-/-) DCs were poor T cell stimulators in vitro in a three-dimensional collagen matrix and in vivo, associated with altered DC-T cell contact dynamics and T cell polarization. Accordingly, Myo9b(-/-) mice showed an attenuated ear-swelling response in a model of contact hypersensitivity. The impaired migratory and T cell stimulatory capacity of Myo9b(-/-) DCs was restored in large part by pharmacological activation of cofilin. Taken together, these results identify Myo9b as a negative key regulator of the Rho/RhoA effector Rho-kinase [Rho-associated coiled-coil-forming kinase (ROCK)]/LIM domain kinase signaling pathway in DCs, which controls cofilin inactivation and myosin II activation and, therefore may control, in part, the induction of adaptive immune responses.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Miosinas/metabolismo , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Quinases Associadas a rho/metabolismo , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Comunicação Celular/imunologia , Diferenciação Celular , Movimento Celular/imunologia , Células Dendríticas/citologia , Dermatite de Contato/genética , Dermatite de Contato/imunologia , Dermatite de Contato/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Miosinas/genética
10.
J Biol Chem ; 289(44): 30772-30784, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25213860

RESUMO

RhoA is thought to be essential for coordination of the membrane protrusions and retractions required for immune cell motility and directed migration. Whether the subfamily of Rho (Ras homolog) GTPases (RhoA, RhoB, and RhoC) is actually required for the directed migration of primary cells is difficult to predict. Macrophages isolated from myeloid-restricted RhoA/RhoB (conditional) double knock-out (dKO) mice did not express RhoC and were essentially "pan-Rho"-deficient. Using real-time chemotaxis assays, we found that retraction of the trailing edge was dissociated from the advance of the cell body in dKO cells, which developed extremely elongated tails. Surprisingly, velocity (of the cell body) was increased, whereas chemotactic efficiency was preserved, when compared with WT macrophages. Randomly migrating RhoA/RhoB dKO macrophages exhibited multiple small protrusions and developed large "branches" due to impaired lamellipodial retraction. A mouse model of peritonitis indicated that monocyte/macrophage recruitment was, surprisingly, more rapid in RhoA/RhoB dKO mice than in WT mice. In comparison with dKO cells, the phenotypes of single RhoA- or RhoB-deficient macrophages were mild due to mutual compensation. Furthermore, genetic deletion of RhoB partially reversed the motility defect of macrophages lacking the RhoGAP (Rho GTPase-activating protein) myosin IXb (Myo9b). In conclusion, the Rho subfamily is not required for "front end" functions (motility and chemotaxis), although both RhoA and RhoB are involved in pulling up the "back end" and resorbing lamellipodial membrane protrusions. Macrophages lacking Rho proteins migrate faster in vitro, which, in the case of the peritoneum, translates to more rapid in vivo monocyte/macrophage recruitment.


Assuntos
Macrófagos Peritoneais/enzimologia , Pseudópodes/patologia , Proteínas ras/genética , Proteínas rho de Ligação ao GTP/genética , Proteína rhoB de Ligação ao GTP/genética , Animais , Polaridade Celular , Células Cultivadas , Quimiotaxia , Feminino , Expressão Gênica , Macrófagos Peritoneais/patologia , Camundongos , Camundongos Knockout , Miosinas/genética , Peritonite/enzimologia , Peritonite/patologia , Pseudópodes/enzimologia , Proteínas ras/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP , Proteína rhoB de Ligação ao GTP/metabolismo , Proteína de Ligação a GTP rhoC
11.
Am J Physiol Renal Physiol ; 309(6): F501-13, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26136556

RESUMO

Mammalian class IX myosin Myo9a is a single-headed, actin-dependent motor protein with Rho GTPase-activating protein activity that negatively regulates Rho GTPase signaling. Myo9a is abundantly expressed in ciliated epithelial cells of several organs. In mice, genetic deletion of Myo9a leads to the formation of hydrocephalus. Whether Myo9a also has essential functions in the epithelia of other organs of the body has not been explored. In the present study, we report that Myo9a-deficient mice develop bilateral renal disease, characterized by dilation of proximal tubules, calyceal dilation, and thinning of the parenchyma and fibrosis. These structural changes are accompanied by polyuria (with normal vasopressin levels) and low-molecular-weight proteinuria. Immunohistochemistry revealed that Myo9a is localized to the circumferential F-actin belt of proximal tubule cells. In kidneys lacking Myo9a, the multiligand binding receptor megalin and its ligand albumin accumulated at the luminal surface of Myo9a-deficient proximal tubular cells, suggesting that endocytosis is dysregulated. In addition, we found, surprisingly, that levels of murine diaphanous-related formin-1, a Rho effector, were decreased in Myo9a-deficient kidneys as well as in Myo9a knockdown LLC-PK1 cells. In summary, deletion of the Rho GTPase-activating protein Myo9a in mice causes proximal tubular dilation and fibrosis, and we speculate that downregulation of murine diaphanous-related formin-1 and impaired protein reabsorption contribute to the pathophysiology.


Assuntos
Proteínas Ativadoras de GTPase/fisiologia , Túbulos Renais/fisiologia , Miosinas/fisiologia , Albuminas/metabolismo , Animais , Proteínas de Transporte/metabolismo , Células Cultivadas , Endocitose/fisiologia , Forminas , Proteínas Ativadoras de GTPase/genética , Hidronefrose/genética , Hidronefrose/metabolismo , Túbulos Renais/anatomia & histologia , Túbulos Renais/citologia , Células LLC-PK1 , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miosinas/genética , Néfrons/fisiologia , Poliúria/genética , Poliúria/metabolismo , Suínos , Vasopressinas/metabolismo , Quinases Associadas a rho/metabolismo
12.
J Biol Chem ; 287(13): 10650-10663, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22235111

RESUMO

The function of P2X(7) receptors (ATP-gated ion channels) in innate immune cells is unclear. In the setting of Toll-like receptor (TLR) stimulation, secondary activation of P2X(7) ion channels has been linked to pro-caspase-1 cleavage and cell death. Here we show that cell death is a surprisingly early triggered event. We show using live-cell imaging that transient (1-4 min) stimulation of mouse macrophages with high extracellular ATP ([ATP]e) triggers delayed (hours) cell death, indexed as DEVDase (caspase-3 and caspase-7) activity. Continuous or transient high [ATP]e did not induce cell death in P2X(7)-deficient (P2X(7)(-/-)) macrophages or neutrophils (in which P2X(7) could not be detected). Blocking sustained Ca(2+) influx, a signature of P2X(7) ligation, was highly protective, whereas no protection was conferred in macrophages lacking caspase-1 or TLR2 and TLR4. Furthermore, pannexin-1 (Panx1) deficiency had no effect on transient ATP-induced delayed cell death or ATP-induced Yo-Pro-1 uptake (an index of large pore pathway formation). Thus, "transient" P2X(7) receptor activation and Ca(2+) overload act as a death trigger for native mouse macrophages independent of Panx1 and pro-inflammatory caspase-1 and TLR signaling.


Assuntos
Caspase 1/metabolismo , Conexinas/metabolismo , Macrófagos Peritoneais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Cálcio/metabolismo , Caspase 1/genética , Caspase 1/imunologia , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Células Cultivadas , Conexinas/genética , Conexinas/imunologia , Macrófagos Peritoneais/imunologia , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/imunologia , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia
13.
Proc Natl Acad Sci U S A ; 107(27): 12145-50, 2010 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-20566876

RESUMO

Directional motility is a fundamental function of immune cells, which are recruited to sites of pathogen invasion or tissue damage by chemoattractant signals. To move, cells need to generate lamellipodial membrane protrusions at the front and retract the trailing end. These elementary events are initiated by Rho-family GTPases, which cycle between active GTP-bound and inactive GDP-bound states. How the activity of these "molecular switches" is spatially coordinated is only beginning to be understood. Here, we show that myosin IXb (Myo9b), a Rho GTPase-activating protein (RhoGAP) expressed in immune cells, is essential for coordinating the activity of Rho. We generated Myo9b-deficient mice and show that Myo9b(-/-) macrophages have strikingly defective spreading and polarization. Furthermore, Myo9b(-/-) macrophages fail to generate lamellipodia in response to a chemoattractant, and migration in a chemotactic gradient is severely impaired. Inhibition of Rho rescues the Myo9b(-/-) phenotype, but impairs tail retraction. We also found that Myo9b is important in vivo. Chemoattractant-induced monocyte recruitment to the peritoneal cavity is substantially reduced in Myo9b(-/-) mice. Thus, we identify the "motorized Rho inhibitor" Myo9b as a key molecular component required for spatially coordinated cell shape changes and motility.


Assuntos
Movimento Celular/fisiologia , Forma Celular/fisiologia , Macrófagos/metabolismo , Miosinas/metabolismo , Animais , Western Blotting , Movimento Celular/genética , Forma Celular/genética , Células Cultivadas , Quimiotaxia/genética , Quimiotaxia/fisiologia , Feminino , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Força Atômica , Microscopia Confocal , Miosinas/genética , Baço/metabolismo , Timo/metabolismo
14.
J Biol Chem ; 286(52): 44776-87, 2011 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-22057273

RESUMO

Adenosine 5'-triphosphate (ATP) has been implicated in the recruitment of professional phagocytes (neutrophils and macrophages) to sites of infection and tissue injury in two distinct ways. First, ATP itself is thought to be a chemotactic "find me" signal released by dying cells, and second, autocrine ATP signaling is implicated as an amplifier mechanism for chemotactic navigation to end-target chemoattractants, such as complement C5a. Here we show using real-time chemotaxis assays that mouse peritoneal macrophages do not directionally migrate to stable analogs of ATP (adenosine-5'-(γ-thio)-triphosphate (ATPγS)) or its hydrolysis product ADP (adenosine-5'-(ß-thio)-diphosphate (ADPßS)). HPLC revealed that these synthetic P2Y(2) (ATPγS) and P2Y(12) (ADPßS) receptor ligands were in fact slowly degraded. We also found that ATPγS, but not ADPßS, promoted chemokinesis (increased random migration). Furthermore, we found that photorelease of ATP or ADP induced lamellipodial membrane extensions. At the cell signaling level, C5a, but not ATPγS, activated Akt, whereas both ligands induced p38 MAPK activation. p38 MAPK and Akt activation are strongly implicated in neutrophil chemotaxis. However, we found that inhibitors of phosphatidylinositol 3-kinase (PI3K; upstream of Akt) and p38 MAPK (or conditional deletion of p38α MAPK) did not impair macrophage chemotactic efficiency or migration velocity. Our results suggest that PI3K and p38 MAPK are redundant for macrophage chemotaxis and that purinergic P2Y(2) and P2Y(12) receptor ligands are not chemotactic. We propose that ATP signaling is strictly autocrine or paracrine and that ATP and ADP may act as short-range "touch me" (rather than long-range find me) signals to promote phagocytic clearance via cell spreading.


Assuntos
Trifosfato de Adenosina/imunologia , Quimiotaxia/fisiologia , Complemento C5a/imunologia , Macrófagos Peritoneais/imunologia , Fosfatidilinositol 3-Quinases/imunologia , Agonistas do Receptor Purinérgico P2Y/imunologia , Receptores Purinérgicos P2Y12/imunologia , Receptores Purinérgicos P2Y2/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia , Difosfato de Adenosina/genética , Difosfato de Adenosina/imunologia , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/farmacologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Comunicação Autócrina/efeitos dos fármacos , Comunicação Autócrina/fisiologia , Quimiotaxia/efeitos dos fármacos , Complemento C5a/genética , Complemento C5a/metabolismo , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Knockout , Comunicação Parácrina/efeitos dos fármacos , Comunicação Parácrina/fisiologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Pseudópodes/genética , Pseudópodes/imunologia , Pseudópodes/metabolismo , Agonistas do Receptor Purinérgico P2Y/metabolismo , Agonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y12/genética , Receptores Purinérgicos P2Y12/metabolismo , Receptores Purinérgicos P2Y2/genética , Receptores Purinérgicos P2Y2/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
15.
J Biol Chem ; 285(32): 24933-42, 2010 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-20538589

RESUMO

Mammalian myosin IXb (Myo9b) has been shown to exhibit unique motor properties in that it is a single-headed processive motor and the rate-limiting step in its chemical cycle is ATP hydrolysis. Furthermore, it has been reported to move toward the minus- and the plus-end of actin filaments. To analyze the contribution of the light chain-binding domain to the movement, processivity, and directionality of a single-headed processive myosin, we expressed constructs of Caenorhabditis elegans myosin IX (Myo9) containing either the head (Myo9-head) or the head and the light chain-binding domain (Myo9-head-4IQ). Both constructs supported actin filament gliding and moved toward the plus-end of actin filaments. We identified in the head of class IX myosins a calmodulin-binding site at the N terminus of loop 2 that is unique among the myosin superfamily members. Ca(2+)/calmodulin negatively regulated ATPase and motility of the Myo9-head. The Myo9-head demonstrated characteristics of a processive motor in that it supported actin filament gliding and pivoting at low motor densities. Quantum dot-labeled Myo9-head moved along actin filaments with a considerable run length and frequently paused without dissociating even in the presence of obstacles. We conclude that class IX myosins are plus-end-directed motors and that even a single head exhibits characteristics of a processive motor.


Assuntos
Actinas/química , Calmodulina/química , Miosinas/química , Adenosina Trifosfatases/química , Animais , Caenorhabditis elegans , Cálcio/química , Humanos , Cinética , Espectrometria de Massas/métodos , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Pontos Quânticos , Proteínas Recombinantes/química
16.
Cell Physiol Biochem ; 28(2): 289-96, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21865736

RESUMO

In normal airway epithelium, the cystic fibrosis transmembrane conductance regulator (CFTR) transports Cl(-) ions to the apical surface of the epithelium paralleled by the flow of water through transcellular and paracellular pathways. The hypothesis was tested whether CFTR not only regulates the transcellular but also the paracellular shunt pathway. Therefore, we performed measurements of transepithelial electrical resistance (TER) and paracellular (14)C-mannitol permeability in wtCFTR (16HBE14o(-)) and delF508-CFTR (CFBE41o(-)) expressing human bronchial epithelial cells. Under resting conditions, CFBE41o(-) cell monolayers exhibit a higher paracellular permeability and lower TER as compared to 16HBE14o(-) monolayers. Stimulation of CFTR by cAMP induces opposite effects in the two cell lines. 16HBE14o(-) monolayers show a sharp decrease of TER, in parallel with a concomitant increase of paracellular permeability. The change in paracellular permeability is mediated by a myosin II dependent mechanism because it can be blocked by the myosin light chain kinase inhibitor ML-7. In contrast, CFBE41o(-) cells respond to cAMP stimulation with a decrease of paracellular permeability, paralleled by slight increase of TER. We conclude that stimulation of wtCFTR increases vectorial transcellular salt transport and, simultaneously, the paracellular permeability allowing water to follow through the paracellular pathway. In contrast, in CF epithelium cAMP stimulation increases neither vectorial salt transport nor paracellular permeability which is likely to contribute to the CF pulmonary phenotype. Taken together, our results link CFTR dysfunction to an improper regulation of the paracellular transport route.


Assuntos
Brônquios/citologia , Permeabilidade da Membrana Celular/fisiologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Azepinas/farmacologia , Linhagem Celular , AMP Cíclico/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Humanos , Manitol/metabolismo , Mutação , Quinase de Cadeia Leve de Miosina/antagonistas & inibidores , Quinase de Cadeia Leve de Miosina/metabolismo , Naftalenos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Junções Íntimas/fisiologia
17.
Biochem Soc Trans ; 39(5): 1166-8, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21936783

RESUMO

Mammals contain two class IX myosins, Myo9a and Myo9b. They are actin-based motorized signalling molecules that negatively regulate RhoA signalling. Myo9a has been implicated in the regulation of epithelial cell morphology and differentiation, whereas Myo9b has been shown to play an important role in the regulation of macrophage shape and motility.


Assuntos
Células Epiteliais/metabolismo , Macrófagos/metabolismo , Miosinas/metabolismo , Isoformas de Proteínas/metabolismo , Animais , Diferenciação Celular , Movimento Celular , Forma Celular , Células Epiteliais/citologia , Humanos , Macrófagos/citologia , Miosinas/genética , Isoformas de Proteínas/genética
18.
Adv Pharmacol ; 90: 19-37, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33706933

RESUMO

More than a scientific paper or a review article, this is a remembrance of a unique time of science and life that the authors spent in Paul Greengard's laboratory at the Rockefeller University in New York in the 1980s and 1990s, forming the so-called synaptic vesicle group. It was a time in which the molecular mechanisms of synaptic transmission and the nature of the organelles in charge of storing and releasing neurotransmitter were just beginning to be understood. It was an exciting time in which the protein composition of synaptic vesicles started to be identified. It turned out that the interactions of synaptic vesicle proteins with the cytoskeleton and the presynaptic membrane and their modulation by protein phosphorylation represented an essential network regulating the efficiency of neurotransmitter release and thereby synaptic strength and plasticity. This is also a description of the distinct scientific journeys that the three authors took on going back to Europe and how they were strongly influenced by the generous and outstanding mentorship of Paul Greengard, his genuine interest in their lives and careers and the life-long friendship with him.


Assuntos
Plasticidade Neuronal/fisiologia , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/fisiologia , Animais , Pesquisa Biomédica , Humanos , Neurônios/fisiologia , Neurotransmissores/metabolismo
19.
Mol Biol Cell ; 18(4): 1507-18, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17314409

RESUMO

Myosin IXb (Myo9b) is a single-headed processive myosin that exhibits Rho GTPase-activating protein (RhoGAP) activity in its tail region. Using live cell imaging, we determined that Myo9b is recruited to extending lamellipodia, ruffles, and filopodia, the regions of active actin polymerization. A functional motor domain was both necessary and sufficient for targeting Myo9b to these regions. The head domains of class IX myosins comprise a large insertion in loop2. Deletion of the large Myo9b head loop 2 insertion abrogated the enrichment in extending lamellipodia and ruffles, but enhanced significantly the enrichment at the tips of filopodia and retraction fibers. The enrichment in the tips of filopodia and retraction fibers depended on four lysine residues C-terminal to the loop 2 insertion and the tail region. Fluorescence recovery after photobleaching and photoactivation experiments in lamellipodia revealed that the dynamics of Myo9b was comparable to that of actin. The exchange rates depended on the Myo9b motor region and motor activity, and they were also dependent on the turnover of F-actin. These results demonstrate that Myo9b functions as a motorized RhoGAP molecule in regions of actin polymerization and identify Myo9b head sequences important for in vivo motor properties.


Assuntos
Actinas/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Miosinas/metabolismo , Animais , Fluorescência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Cinética , Laminina/química , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Miosinas/genética , Fotodegradação , Mutação Puntual , Estrutura Terciária de Proteína , Células Tumorais Cultivadas
20.
J Cell Biol ; 161(2): 237-41, 2003 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-12719468

RESUMO

Myosins are actin-based motors that are generally believed to move by amplifying small structural changes in the core motor domain via a lever arm rotation of the light chain binding domain. However, the lack of a quantitative agreement between observed step sizes and the length of the proposed lever arms from different myosins challenges this view. We analyzed the step size of rat myosin 1d (Myo1d) and surprisingly found that this myosin takes unexpectedly large steps in comparison to other myosins. Engineering the length of the light chain binding domain of rat Myo1d resulted in a linear increase of step size in relation to the putative lever arm length, indicative of a lever arm rotation of the light chain binding domain. The extrapolated pivoting point resided in the same region of the rat Myo1d head domain as in conventional myosins. Therefore, rat Myo1d achieves its larger working stroke by a large calculated approximately 90 degrees rotation of the light chain binding domain. These results demonstrate that differences in myosin step sizes are not only controlled by lever arm length, but also by substantial differences in the degree of lever arm rotation.


Assuntos
Actinas/química , Músculos/química , Músculos/fisiologia , Miosinas/química , Animais , Células HeLa , Humanos , Conformação Molecular , Proteínas Motores Moleculares/química , Estrutura Molecular , Peso Molecular , Contração Muscular/fisiologia , Ratos , Rotação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa