Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Am J Hum Genet ; 110(12): 2015-2028, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37979581

RESUMO

We examined more than 97,000 families from four neurodevelopmental disease cohorts and the UK Biobank to identify phenotypic and genetic patterns in parents contributing to neurodevelopmental disease risk in children. We identified within- and cross-disorder correlations between six phenotypes in parents and children, such as obsessive-compulsive disorder (R = 0.32-0.38, p < 10-126). We also found that measures of sub-clinical autism features in parents are associated with several autism severity measures in children, including biparental mean Social Responsiveness Scale scores and proband Repetitive Behaviors Scale scores (regression coefficient = 0.14, p = 3.38 × 10-4). We further describe patterns of phenotypic similarity between spouses, where spouses show correlations for six neurological and psychiatric phenotypes, including a within-disorder correlation for depression (R = 0.24-0.68, p < 0.001) and a cross-disorder correlation between anxiety and bipolar disorder (R = 0.09-0.22, p < 10-92). Using a simulated population, we also found that assortative mating can lead to increases in disease liability over generations and the appearance of "genetic anticipation" in families carrying rare variants. We identified several families in a neurodevelopmental disease cohort where the proband inherited multiple rare variants in disease-associated genes from each of their affected parents. We further identified parental relatedness as a risk factor for neurodevelopmental disorders through its inverse relationship with variant pathogenicity and propose that parental relatedness modulates disease risk by increasing genome-wide homozygosity in children (R = 0.05-0.26, p < 0.05). Our results highlight the utility of assessing parent phenotypes and genotypes toward predicting features in children who carry rare variably expressive variants and implicate assortative mating as a risk factor for increased disease severity in these families.


Assuntos
Transtorno Autístico , Transtorno Bipolar , Criança , Humanos , Virulência , Pais , Família , Transtorno Autístico/genética , Transtorno Bipolar/genética
2.
Brain ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38848546

RESUMO

Intracellular trafficking involves an intricate machinery of motor complexes including the dynein complex to shuttle cargo for autophagolysosomal degradation. Deficiency in dynein axonemal chains as well as cytoplasmic light and intermediate chains have been linked with ciliary dyskinesia and skeletal dysplasia. The cytoplasmic dynein 1 heavy chain protein (DYNC1H1) serves as a core complex for retrograde trafficking in neuronal axons. Dominant pathogenic variants in DYNC1H1 have been previously implicated in peripheral neuromuscular disorders (NMD) and neurodevelopmental disorders (NDD). As heavy-chain dynein is ubiquitously expressed, the apparent selectivity of heavy-chain dyneinopathy for motor neuronal phenotypes remains currently unaccounted for. Here, we aimed to evaluate the full DYNC1H1-related clinical, molecular and imaging spectrum, including multisystem features and novel phenotypes presenting throughout life. We identified 47 cases from 43 families with pathogenic heterozygous variants in DYNC1H1 (aged 0-59 years) and collected phenotypic data via a comprehensive standardized survey and clinical follow-up appointments. Most patients presented with divergent and previously unrecognized neurological and multisystem features, leading to significant delays in genetic testing and establishing the correct diagnosis. Neurological phenotypes include novel autonomic features, previously rarely described behavioral disorders, movement disorders, and periventricular lesions. Sensory neuropathy was identified in nine patients (median age of onset 10.6 years), of which five were only diagnosed after the second decade of life, and three had a progressive age-dependent sensory neuropathy. Novel multisystem features included primary immunodeficiency, bilateral sensorineural hearing loss, organ anomalies, and skeletal manifestations, resembling the phenotypic spectrum of other dyneinopathies. We also identified an age-dependent biphasic disease course with developmental regression in the first decade and, following a period of stability, neurodegenerative progression after the second decade of life. Of note, we observed several cases in whom neurodegeneration appeared to be prompted by intercurrent systemic infections with double-stranded DNA viruses (Herpesviridae) or single-stranded RNA viruses (Ross-River fever, SARS-CoV-2). Moreover, the disease course appeared to be exacerbated by viral infections regardless of age and/or severity of NDD manifestations, indicating a role of dynein in anti-viral immunity and neuronal health. In summary, our findings expand the clinical, imaging, and molecular spectrum of pathogenic DYNC1H1 variants beyond motor neuropathy disorders and suggest a life-long continuum and age-related progression due to deficient intracellular trafficking. This study will facilitate early diagnosis and improve counselling and health surveillance of affected patients.

3.
J Med Genet ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849204

RESUMO

INTRODUCTION: Tonne-Kalscheuer syndrome (TOKAS) is a recessive X-linked multiple congenital anomaly disorder caused by RLIM variations. Of the 41 patients reported, only 7 antenatal cases were described. METHOD: After the antenatal diagnosis of TOKAS by exome analysis in a family followed for over 35 years because of multiple congenital anomalies in five male fetuses, a call for collaboration was made, resulting in a cohort of 11 previously unpublished cases. RESULTS: We present a TOKAS antenatal cohort, describing 11 new cases in 6 French families. We report a high frequency of diaphragmatic hernia (9 of 11), differences in sex development (10 of 11) and various visceral malformations. We report some recurrent dysmorphic features, but also pontocerebellar hypoplasia, pre-auricular skin tags and olfactory bulb abnormalities previously unreported in the literature. Although no clear genotype-phenotype correlation has yet emerged, we show that a recurrent p.(Arg611Cys) variant accounts for 66% of fetal TOKAS cases. We also report two new likely pathogenic variants in RLIM, outside of the two previously known mutational hotspots. CONCLUSION: Overall, we present the first fetal cohort of TOKAS, describe the clinical features that made it a recognisable syndrome at fetopathological examination, and extend the phenotypical spectrum and the known genotype of this rare disorder.

4.
Am J Med Genet C Semin Med Genet ; : e32087, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591859

RESUMO

Marfanoid habitus and intellectual disability (MHID) co-occur in multiple neurodevelopmental disorders (NDD). Among those, Lujan-Fryns, an X-linked genetic disorder associated with variants in MED12 was the first such syndrome identified. Accurate molecular diagnosis for these MHID syndromes remains a challenge due to significant clinical and genetic heterogeneity. We present a case report of a 20-year-old male patient with MHID and severe social anxiety. A comprehensive clinical evaluation, including morphotype assessment, cognitive, and psychometric and genetic testing, was conducted to provide a detailed understanding of the patient's complex clinical presentation. Psychometric assessments revealed severe social anxiety and various cognitive and emotional challenges. Despite some autism-like symptoms, the patient's clinical presentation was more aligned with mild intellectual disability. Exome sequencing was inconclusive but identified a heterozygous de novo missense variant in the PCDHGA5 gene. This gene is not known in human pathology yet, but we also report a second patient with a syndromic neurodevelopmental disorder and a rare de novo variant which leads us to propose this as a candidate gene. Our findings emphasize the importance of multidisciplinary approach in the diagnosis and management of MHID. This case report underscores the need for objective clinical evaluations and standardized tools to better understand the complex clinical profiles of patients with NDDs. The identification of novel PCDHGA5 gene variants adds this gene's candidacy to the genetic landscape of MHID-NDD, warranting further investigation to determine its potential contribution.

5.
Genet Med ; 26(4): 101057, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38158856

RESUMO

PURPOSE: We established the genetic etiology of a syndromic neurodevelopmental condition characterized by variable cognitive impairment, recognizable facial dysmorphism, and a constellation of extra-neurological manifestations. METHODS: We performed phenotypic characterization of 6 participants from 4 unrelated families presenting with a neurodevelopmental syndrome and used exome sequencing to investigate the underlying genetic cause. To probe relevance to the neurodevelopmental phenotype and craniofacial dysmorphism, we established two- and three-dimensional human stem cell-derived neural models and generated a stable cachd1 zebrafish mutant on a transgenic cartilage reporter line. RESULTS: Affected individuals showed mild cognitive impairment, dysmorphism featuring oculo-auriculo abnormalities, and developmental defects involving genitourinary and digestive tracts. Exome sequencing revealed biallelic putative loss-of-function variants in CACHD1 segregating with disease in all pedigrees. RNA sequencing in CACHD1-depleted neural progenitors revealed abnormal expression of genes with key roles in Wnt signaling, neurodevelopment, and organ morphogenesis. CACHD1 depletion in neural progenitors resulted in reduced percentages of post-mitotic neurons and enlargement of 3D neurospheres. Homozygous cachd1 mutant larvae showed mandibular patterning defects mimicking human facial dysmorphism. CONCLUSION: Our findings support the role of loss-of-function variants in CACHD1 as the cause of a rare neurodevelopmental syndrome with facial dysmorphism and multisystem abnormalities.


Assuntos
Anormalidades Múltiplas , Anormalidades Craniofaciais , Anormalidades Musculoesqueléticas , Transtornos do Neurodesenvolvimento , Animais , Humanos , Anormalidades Múltiplas/genética , Anormalidades Craniofaciais/genética , Deficiência Intelectual/genética , Anormalidades Musculoesqueléticas/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Síndrome , Peixe-Zebra/genética
6.
Mol Psychiatry ; 28(2): 668-697, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36385166

RESUMO

Missense and truncating variants in the X-chromosome-linked CLCN4 gene, resulting in reduced or complete loss-of-function (LOF) of the encoded chloride/proton exchanger ClC-4, were recently demonstrated to cause a neurocognitive phenotype in both males and females. Through international clinical matchmaking and interrogation of public variant databases we assembled a database of 90 rare CLCN4 missense variants in 90 families: 41 unique and 18 recurrent variants in 49 families. For 43 families, including 22 males and 33 females, we collated detailed clinical and segregation data. To confirm causality of variants and to obtain insight into disease mechanisms, we investigated the effect on electrophysiological properties of 59 of the variants in Xenopus oocytes using extended voltage and pH ranges. Detailed analyses revealed new pathophysiological mechanisms: 25% (15/59) of variants demonstrated LOF, characterized by a "shift" of the voltage-dependent activation to more positive voltages, and nine variants resulted in a toxic gain-of-function, associated with a disrupted gate allowing inward transport at negative voltages. Functional results were not always in line with in silico pathogenicity scores, highlighting the complexity of pathogenicity assessment for accurate genetic counselling. The complex neurocognitive and psychiatric manifestations of this condition, and hitherto under-recognized impacts on growth, gastrointestinal function, and motor control are discussed. Including published cases, we summarize features in 122 individuals from 67 families with CLCN4-related neurodevelopmental condition and suggest future research directions with the aim of improving the integrated care for individuals with this diagnosis.


Assuntos
Transtornos do Neurodesenvolvimento , Masculino , Feminino , Humanos , Transtornos do Neurodesenvolvimento/genética , Mutação de Sentido Incorreto , Genes Ligados ao Cromossomo X , Fenótipo , Canais de Cloreto/genética
7.
Eur J Epidemiol ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38671254

RESUMO

INTRODUCTION: Between 2019-2021, facing public concern, a scientific expert committee (SEC) reanalysed suspected clusters of transverse upper limb reduction defects (TULRD) in three administrative areas in France, where initial investigations had not identified any risk exposure. We share here the national approach we developed for managing suspicious clusters of the same group of congenital anomalies occurring in several areas. METHODS: The SEC analysed the medical records of TURLD suspected cases and performed spatiotemporal analyses on confirmed cases. If the cluster was statistically significant and included at least three cases, the SEC reviewed exposures obtained from questionnaires, environmental databases, and a survey among farmers living near to cases' homes concerning their plant product use. RESULTS: After case re-ascertainment, no statistically significant cluster was observed in the first administrative areas. In the second area, a cluster of four children born in two nearby towns over two years was confirmed, but as with the initial investigations, no exposure to a known risk factor explaining the number of cases in excess was identified. In the third area, a cluster including just two cases born the same year in the same town was confirmed. DISCUSSION: Our experience highlights that in the event of suspicious clusters occurring in different areas of a country, a coordinated and standardised approach should be preferred.

8.
Nature ; 561(7722): E7, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29977062

RESUMO

In this Letter, the surname of author Lena Vlaminck was misspelled 'Vlaeminck'. In addition, author Kris Vleminckx should have been associated with affiliation 16 (Center for Medical Genetics, Ghent University, Ghent, Belgium). These have been corrected online.

9.
Nature ; 557(7706): 564-569, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29769720

RESUMO

The four R-spondin secreted ligands (RSPO1-RSPO4) act via their cognate LGR4, LGR5 and LGR6 receptors to amplify WNT signalling1-3. Here we report an allelic series of recessive RSPO2 mutations in humans that cause tetra-amelia syndrome, which is characterized by lung aplasia and a total absence of the four limbs. Functional studies revealed impaired binding to the LGR4/5/6 receptors and the RNF43 and ZNRF3 transmembrane ligases, and reduced WNT potentiation, which correlated with allele severity. Unexpectedly, however, the triple and ubiquitous knockout of Lgr4, Lgr5 and Lgr6 in mice did not recapitulate the known Rspo2 or Rspo3 loss-of-function phenotypes. Moreover, endogenous depletion or addition of exogenous RSPO2 or RSPO3 in triple-knockout Lgr4/5/6 cells could still affect WNT responsiveness. Instead, we found that the concurrent deletion of rnf43 and znrf3 in Xenopus embryos was sufficient to trigger the outgrowth of supernumerary limbs. Our results establish that RSPO2, without the LGR4/5/6 receptors, serves as a direct antagonistic ligand to RNF43 and ZNRF3, which together constitute a master switch that governs limb specification. These findings have direct implications for regenerative medicine and WNT-associated cancers.


Assuntos
Proteínas de Ligação a DNA/antagonistas & inibidores , Extremidades/embriologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Deformidades Congênitas dos Membros/genética , Receptores Acoplados a Proteínas G/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Animais , Proteínas de Ligação a DNA/metabolismo , Feminino , Fibroblastos , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Camundongos , Proteínas Oncogênicas/antagonistas & inibidores , Proteínas Oncogênicas/metabolismo , Fenótipo , Receptores Acoplados a Proteínas G/deficiência , Ubiquitina-Proteína Ligases/metabolismo , Xenopus/genética
10.
Prenat Diagn ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38923613

RESUMO

INTRODUCTION: Acute fetal leukemia is rare and characterized by a very poor prognosis. The aims of this study were to identify cases of acute fetal leukemia and to describe ultrasound and fetopathological findings that should lead to a suspicion of this diagnosis, as well as the investigations required to confirm it. METHODS: A national retrospective study was conducted. Clinical data, prenatal ultrasounds and postmortem findings of fetal acute leukemia cases were collected and analyzed. RESULTS: We collected seven cases: four in utero fetal deaths, two neonatal deaths and one termination of pregnancy. Prenatal ultrasounds showed fetal hydrops (42.9%) associated with hepatosplenomegaly (100%). In addition, post-mortem examination (n = 6) suggested a Down syndrome in one case and showed other organomegaly (83.3%) due to blastic infiltration, mainly in the liver, along with extrahepatic multivisceral hematopoiesis. Immunostainings allowed to specify the type of leukemia (71.4%). In one case, diagnosis was made on blood smear and flow cytometry was performed on fresh blood samples. All cases corresponded to acute myeloid leukemia. Karyotype was abnormal in 4 cases (66.7%), including one free trisomy 21, two mosaic trisomy 21 and one chromosome 15 deletion. GATA1 gene mutations were identified in two cases: one mosaic trisomy 21 and one with normal karyotype. CONCLUSION: Any hepatosplenomegaly associated with fetal hydrops and a negative immune, infectious, and metabolic work-up, should suggest acute fetal leukemia and prompt additional investigations.

11.
J Med Genet ; 60(2): 183-192, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35393335

RESUMO

BACKGROUND: Malformations of cortical development (MCDs) have been reported in a subset of patients with pathogenic heterozygous variants in GRIN1 or GRIN2B, genes which encode for subunits of the N-methyl-D-aspartate receptor (NMDAR). The aim of this study was to further define the phenotypic spectrum of NMDAR-related MCDs. METHODS: We report the clinical, radiological and molecular features of 7 new patients and review data on 18 previously reported individuals with NMDAR-related MCDs. Neuropathological findings for two individuals with heterozygous variants in GRIN1 are presented. We report the clinical and neuropathological features of one additional individual with homozygous pathogenic variants in GRIN1. RESULTS: Heterozygous variants in GRIN1 and GRIN2B were associated with overlapping severe clinical and imaging features, including global developmental delay, epilepsy, diffuse dysgyria, dysmorphic basal ganglia and hippocampi. Neuropathological examination in two fetuses with heterozygous GRIN1 variants suggests that proliferation as well as radial and tangential neuronal migration are impaired. In addition, we show that neuronal migration is also impaired by homozygous GRIN1 variants in an individual with microcephaly with simplified gyral pattern. CONCLUSION: These findings expand our understanding of the clinical and imaging features of the 'NMDARopathy' spectrum and contribute to our understanding of the likely underlying pathogenic mechanisms leading to MCD in these patients.


Assuntos
Epilepsia , Microcefalia , Receptores de N-Metil-D-Aspartato , Humanos , Heterozigoto , Homozigoto , Proteínas do Tecido Nervoso/genética , Receptores de N-Metil-D-Aspartato/genética
12.
Clin Genet ; 103(5): 560-565, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36453701

RESUMO

Hydrops fetalis is a rare disorder associated with significant perinatal complications and a high perinatal mortality of at least 50%. Nonimmune hydrops fetalis (NIHF) is more frequent and results from a wide variety of etiologies. One cause of NIHF is lymphatic malformation 6 (LMPHM6) due to biallelic loss-of-function (LoF) variants in PIEZO1. Most individuals are diagnosed postnatally and only few clinical data are available on fetal presentations. We report six novel biallelic predicted LoF variants in PIEZO1 identified by exome sequencing in six fetuses and one deceased neonate from four unrelated families affected with LMPHM6. During the pregnancy, most cases are revealed by isolated NIHF at second trimester of gestation. At post-mortem examination ascites, pleural effusions and telengectasies can guide the etiological diagnosis. We aim to further describe the perinatal presentation of this condition which could be underdiagnosed.


Assuntos
Hidropisia Fetal , Diagnóstico Pré-Natal , Gravidez , Recém-Nascido , Feminino , Humanos , Hidropisia Fetal/diagnóstico , Hidropisia Fetal/genética , Feto , Canais Iônicos/genética
13.
Am J Med Genet A ; 191(1): 52-63, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36196855

RESUMO

A small but growing body of scientific literature is emerging about clinical findings in patients with 19p13.3 microdeletion or duplication. Recently, a proximal 19p13.3 microduplication syndrome was described, associated with growth delay, microcephaly, psychomotor delay and dysmorphic features. The aim of our study was to better characterize the syndrome associated with duplications in the proximal 19p13.3 region (prox 19p13.3 dup), and to propose a comprehensive analysis of the underlying genomic mechanism. We report the largest cohort of patients with prox 19p13.3 dup through a collaborative study. We collected 24 new patients with terminal or interstitial 19p13.3 duplication characterized by array-based Comparative Genomic Hybridization (aCGH). We performed mapping, phenotype-genotype correlations analysis, critical region delineation and explored three-dimensional chromatin interactions by analyzing Topologically Associating Domains (TADs). We define a new 377 kb critical region (CR 1) in chr19: 3,116,922-3,494,377, GRCh37, different from the previously described critical region (CR 2). The new 377 kb CR 1 includes a TAD boundary and two enhancers whose common target is PIAS4. We hypothesize that duplications of CR 1 are responsible for tridimensional structural abnormalities by TAD disruption and misregulation of genes essentials for the control of head circumference during development, by breaking down the interactions between enhancers and the corresponding targeted gene.


Assuntos
Anormalidades Múltiplas , Microcefalia , Humanos , Hibridização Genômica Comparativa , Anormalidades Múltiplas/genética , Microcefalia/genética , Síndrome , Estudos de Associação Genética
14.
J Med Genet ; 59(6): 559-567, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33820833

RESUMO

BACKGROUND: Arthrogryposis multiplex congenita (AMC) is characterised by congenital joint contractures in two or more body areas. AMC exhibits wide phenotypic and genetic heterogeneity. Our goals were to improve the genetic diagnosis rates of AMC, to evaluate the added value of whole exome sequencing (WES) compared with targeted exome sequencing (TES) and to identify new genes in 315 unrelated undiagnosed AMC families. METHODS: Several genomic approaches were used including genetic mapping of disease loci in multiplex or consanguineous families, TES then WES. Sanger sequencing was performed to identify or validate variants. RESULTS: We achieved disease gene identification in 52.7% of AMC index patients including nine recently identified genes (CNTNAP1, MAGEL2, ADGRG6, ADCY6, GLDN, LGI4, LMOD3, UNC50 and SCN1A). Moreover, we identified pathogenic variants in ASXL3 and STAC3 expanding the phenotypes associated with these genes. The most frequent cause of AMC was a primary involvement of skeletal muscle (40%) followed by brain (22%). The most frequent mode of inheritance is autosomal recessive (66.3% of patients). In sporadic patients born to non-consanguineous parents (n=60), de novo dominant autosomal or X linked variants were observed in 30 of them (50%). CONCLUSION: New genes recently identified in AMC represent 21% of causing genes in our cohort. A high proportion of de novo variants were observed indicating that this mechanism plays a prominent part in this developmental disease. Our data showed the added value of WES when compared with TES due to the larger clinical spectrum of some disease genes than initially described and the identification of novel genes.


Assuntos
Artrogripose , Artrogripose/diagnóstico , Artrogripose/genética , Artrogripose/patologia , Genômica , Humanos , Linhagem , Fenótipo , Proteínas/genética , Fatores de Transcrição/genética , Sequenciamento do Exoma
15.
Hum Mutat ; 43(3): 347-361, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35005812

RESUMO

We report the screening of a large panel of genes in a series of 100 fetuses (98 families) affected with severe renal defects. Causative variants were identified in 22% of cases, greatly improving genetic counseling. The percentage of variants explaining the phenotype was different according to the type of phenotype. The highest diagnostic yield was found in cases affected with the ciliopathy-like phenotype (11/15 families and, in addition, a single heterozygous or a homozygous Class 3 variant in PKHD1 in three unrelated cases with autosomal recessive polycystic kidney disease). The lowest diagnostic yield was observed in cases with congenital anomalies of the kidney and urinary tract (9/78 families and, in addition, Class 3 variants in GREB1L in three unrelated cases with bilateral renal agenesis). Inheritance was autosomal recessive in nine genes (PKHD1, NPHP3, CEP290, TMEM67, DNAJB11, FRAS1, ACE, AGT, and AGTR1), and autosomal dominant in six genes (PKD1, PKD2, PAX2, EYA1, BICC1, and MYOCD). Finally, we developed an original approach of next-generation sequencing targeted RNA sequencing using the custom capture panel used for the sequencing of DNA, to validate one MYOCD heterozygous splicing variant identified in two male siblings with megabladder and inherited from their healthy mother.


Assuntos
Nefropatias , Rim Policístico Autossômico Dominante , Antígenos de Neoplasias , Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto/genética , Feminino , Feto/anormalidades , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Rim/anormalidades , Nefropatias/congênito , Nefropatias/diagnóstico , Nefropatias/genética , Masculino , Mutação , Rim Policístico Autossômico Dominante/genética
16.
Am J Med Genet C Semin Med Genet ; 190(2): 231-242, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35872606

RESUMO

Technological advances in both genome sequencing and prenatal imaging are increasing our ability to accurately recognize and diagnose Mendelian conditions prenatally. Phenotype-driven early genetic diagnosis of fetal genetic disease can help to strategize treatment options and clinical preventive measures during the perinatal period, to plan in utero therapies, and to inform parental decision-making. Fetal phenotypes of genetic diseases are often unique and at present are not well understood; more comprehensive knowledge about prenatal phenotypes and computational resources have an enormous potential to improve diagnostics and translational research. The Human Phenotype Ontology (HPO) has been widely used to support diagnostics and translational research in human genetics. To better support prenatal usage, the HPO consortium conducted a series of workshops with a group of domain experts in a variety of medical specialties, diagnostic techniques, as well as diseases and phenotypes related to prenatal medicine, including perinatal pathology, musculoskeletal anomalies, neurology, medical genetics, hydrops fetalis, craniofacial malformations, cardiology, neonatal-perinatal medicine, fetal medicine, placental pathology, prenatal imaging, and bioinformatics. We expanded the representation of prenatal phenotypes in HPO by adding 95 new phenotype terms under the Abnormality of prenatal development or birth (HP:0001197) grouping term, and revised definitions, synonyms, and disease annotations for most of the 152 terms that existed before the beginning of this effort. The expansion of prenatal phenotypes in HPO will support phenotype-driven prenatal exome and genome sequencing for precision genetic diagnostics of rare diseases to support prenatal care.


Assuntos
Biologia Computacional , Placenta , Recém-Nascido , Humanos , Feminino , Gravidez , Biologia Computacional/métodos , Fenótipo , Doenças Raras , Sequenciamento do Exoma
17.
Am J Hum Genet ; 104(2): 213-228, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30639323

RESUMO

Primary defects in lung branching morphogenesis, resulting in neonatal lethal pulmonary hypoplasias, are incompletely understood. To elucidate the pathogenetics of human lung development, we studied a unique collection of samples obtained from deceased individuals with clinically and histopathologically diagnosed interstitial neonatal lung disorders: acinar dysplasia (n = 14), congenital alveolar dysplasia (n = 2), and other lethal lung hypoplasias (n = 10). We identified rare heterozygous copy-number variant deletions or single-nucleotide variants (SNVs) involving TBX4 (n = 8 and n = 2, respectively) or FGF10 (n = 2 and n = 2, respectively) in 16/26 (61%) individuals. In addition to TBX4, the overlapping ∼2 Mb recurrent and nonrecurrent deletions at 17q23.1q23.2 identified in seven individuals with lung hypoplasia also remove a lung-specific enhancer region. Individuals with coding variants involving either TBX4 or FGF10 also harbored at least one non-coding SNV in the predicted lung-specific enhancer region, which was absent in 13 control individuals with the overlapping deletions but without any structural lung anomalies. The occurrence of rare coding variants involving TBX4 or FGF10 with the putative hypomorphic non-coding SNVs implies a complex compound inheritance of these pulmonary hypoplasias. Moreover, they support the importance of TBX4-FGF10-FGFR2 epithelial-mesenchymal signaling in human lung organogenesis and help to explain the histopathological continuum observed in these rare lethal developmental disorders of the lung.


Assuntos
Fator 10 de Crescimento de Fibroblastos/genética , Doenças do Recém-Nascido/genética , Doenças do Recém-Nascido/mortalidade , Pneumopatias/genética , Pneumopatias/mortalidade , Transdução de Sinais/genética , Proteínas com Domínio T/genética , Variações do Número de Cópias de DNA/genética , Feminino , Fator 10 de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Idade Gestacional , Humanos , Recém-Nascido , Doenças do Recém-Nascido/metabolismo , Doenças do Recém-Nascido/patologia , Pulmão/embriologia , Pulmão/crescimento & desenvolvimento , Pneumopatias/metabolismo , Pneumopatias/patologia , Masculino , Herança Materna , Organogênese , Herança Paterna , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Proteínas com Domínio T/metabolismo
18.
Clin Genet ; 102(6): 543-547, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36031591

RESUMO

Dehydrated hereditary stomatocytosis (DHS) (MIM#194380) is a rare autosomal dominant disorder of red blood cell permeability, characterized by a partially or fully compensated nonimmune hemolytic anemia. PIEZO1 is the major gene involved with hundreds of families described, some of which present transient perinatal edema of varying severity. A smaller subset of individuals harbors pathogenic variants in KCNN4, sometimes referred as "Gardos channelopathy." Up to now, only six pathogenic variants in KCNN4 have been reported in 13 unrelated families. Unlike PIEZO1-DHS, neither perinatal edema nor fetal loss has ever been observed linked to KCNN4-DHS. We report the first fetal loss due to non-immune hydrops fetalis related to a pathogenic 28 bp deletion (NM_002250.2: c.1109_1119+17del) in KCNN4. This observation underlies the need for very close monitoring of pregnancies when one parent is affected by DHS regardless of genotype (PIEZO1 or KCNN4).


Assuntos
Anemia Hemolítica Congênita , Canalopatias , Gravidez , Feminino , Humanos , Hidropisia Fetal/genética , Anemia Hemolítica Congênita/complicações , Anemia Hemolítica Congênita/genética , Canalopatias/complicações , Canais Iônicos/genética , Edema/complicações
19.
Clin Genet ; 102(2): 117-122, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35470444

RESUMO

BRD4 is part of a multiprotein complex involved in loading the cohesin complex onto DNA, a fundamental process required for cohesin-mediated loop extrusion and formation of Topologically Associating Domains. Pathogenic variations in this complex have been associated with a growing number of syndromes, collectively known as cohesinopathies, the most classic being Cornelia de Lange syndrome. However, no cohort study has been conducted to delineate the clinical and molecular spectrum of BRD4-related disorder. We formed an international collaborative study, and collected 14 new patients, including two fetuses. We performed phenotype and genotype analysis, integrated prenatal findings from fetopathological examinations, phenotypes of pediatric patients and adults. We report the first cohort of patients with BRD4-related disorder and delineate the dysmorphic features at different ages. This work extends the phenotypic spectrum of cohesinopathies and characterize a new clinically relevant and recognizable pattern, distinguishable from the other cohesinopathies.


Assuntos
Síndrome de Cornélia de Lange , Proteínas Nucleares , Proteínas de Ciclo Celular/genética , Criança , Síndrome de Cornélia de Lange/diagnóstico , Síndrome de Cornélia de Lange/genética , Síndrome de Cornélia de Lange/patologia , Feminino , Genômica , Humanos , Mutação , Proteínas Nucleares/genética , Fenótipo , Gravidez , Fatores de Transcrição/genética
20.
Am J Med Genet A ; 188(10): 2958-2968, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35904974

RESUMO

Congenital diaphragmatic hernia (CDH) can occur in isolation or in conjunction with other birth defects (CDH+). A molecular etiology can only be identified in a subset of CDH cases. This is due, in part, to an incomplete understanding of the genes that contribute to diaphragm development. Here, we used clinical and molecular data from 36 individuals with CDH+ who are cataloged in the DECIPHER database to identify genes that may play a role in diaphragm development and to discover new phenotypic expansions. Among this group, we identified individuals who carried putatively deleterious sequence or copy number variants affecting CREBBP, SMARCA4, UBA2, and USP9X. The role of these genes in diaphragm development was supported by their expression in the developing mouse diaphragm, their similarity to known CDH genes using data from a previously published and validated machine learning algorithm, and/or the presence of CDH in other individuals with their associated genetic disorders. Our results demonstrate how data from DECIPHER, and other public databases, can be used to identify new phenotypic expansions and suggest that CREBBP, SMARCA4, UBA2, and USP9X play a role in diaphragm development.


Assuntos
Hérnias Diafragmáticas Congênitas , Animais , Variações do Número de Cópias de DNA , Diafragma , Hérnias Diafragmáticas Congênitas/genética , Camundongos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa