Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Mol Med ; 16(1): 93-111, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177534

RESUMO

Antimicrobial resistance is a global problem, rendering conventional treatments less effective and requiring innovative strategies to combat this growing threat. The tripartite AcrAB-TolC efflux pump is the dominant constitutive system by which Enterobacterales like Escherichia coli and Klebsiella pneumoniae extrude antibiotics. Here, we describe the medicinal chemistry development and drug-like properties of BDM91288, a pyridylpiperazine-based AcrB efflux pump inhibitor. In vitro evaluation of BDM91288 confirmed it to potentiate the activity of a panel of antibiotics against K. pneumoniae as well as revert clinically relevant antibiotic resistance mediated by acrAB-tolC overexpression. Using cryo-EM, BDM91288 binding to the transmembrane region of K. pneumoniae AcrB was confirmed, further validating the mechanism of action of this inhibitor. Finally, proof of concept studies demonstrated that oral administration of BDM91288 significantly potentiated the in vivo efficacy of levofloxacin treatment in a murine model of K. pneumoniae lung infection.


Assuntos
Antibacterianos , Proteínas de Escherichia coli , Animais , Camundongos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/farmacologia , Klebsiella pneumoniae/metabolismo , Escherichia coli , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/farmacologia
2.
Microbiome Res Rep ; 2(4): 28, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38045926

RESUMO

Background: The peptide MS2-L represents toxins of the ssRNA Leviviridae phage family and consists of a predicted N-terminal soluble domain followed by a transmembrane domain. MS2-L mediates bacterial cell lysis through the formation of large lesions in the cell envelope, but further details of this mechanism as a prerequisite for applied bioengineering studies are lacking. The chaperone DnaJ is proposed to modulate MS2-L activity, whereas other cellular targets of MS2-L are unknown. Methods: Here, we provide a combined in vitro and in vivo overexpression approach to reveal molecular insights into MS2-L action and its interaction with DnaJ. Full-length MS2-L and truncated derivatives were synthesized cell-free and co-translationally inserted into nanodiscs or solubilized in detergent micelles. By native liquid bead ion desorption mass spectrometry, we demonstrate that MS2-L assembles into high oligomeric states after membrane insertion. Results: Oligomerization is directed by the transmembrane domain and is impaired in detergent environments. Studies with truncated MS2-L derivatives provide evidence that the soluble domain acts as a modulator of oligomer formation. DnaJ strongly interacts with MS2-L in membranes as well as in detergent environments. However, this interaction affects neither the MS2-L membrane insertion efficiency nor its oligomerization in nanodisc membranes. In accordance with the in vitro data, the assembly of MS2-L derivatives into large membrane located clusters was monitored by overexpression of corresponding fusions with fluorescent monitors in E. coli cells. Analysis by cryo-electron microscopy indicates that lesion formation is initiated in the outer membrane, followed by disruption of the peptidoglycan layer and disintegration of the inner membrane. Conclusion: MS2-L forms oligomeric complexes similar to the related phage toxin ΦX174-E. The oligomeric interface of both peptides is located within their transmembrane domains. We propose a potential function of the higher-order assembly of small phage toxins in membrane disintegration and cell lysis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa