RESUMO
A homologous series of 4,7-bis(aryl) substituted benzothiadiazole (BTD) compounds, containing the helicenic derivatives bis([4]helicene), bis([5]helicene) and bis([6]helicene), have been prepared upon a double Suzuki coupling between 3,6-bis(pinacolyl-borane)-BTD and the corresponding bromo-aryl precursors. The single crystal X-ray structure of the bis([4]helicene) compound shows the existence of both helicities (M) and (P) on the same molecule. All the compounds of the series are highly emissive in solution, with quantum yields of the emission ranging from 50 to 91 %. The enantiopure compounds (M,M) and (P,P) for the BTD-bis([6]helicene) have been prepared from the corresponding enantiopure 2-bromo-[6]helicene precursors. Their chiroptical properties have been investigated in correlation with density functional theory (DFT) calculations, which allowed to confidently assign the absolute configuration of the helicene arms and to characterize the different electronic transitions, including the low energy charge transfer excitation from helicenes to BTD. The enantiomerically pure fluorophores (M,M)- and (P,P)-BTD-bis([6]helicene), which exist in solution as two main conformers, according to the DFT calculations, show CPL activity in solution, with glum factors of ≈1.7×10-3 at λem=525â nm, and also in the solid state, with glum factors of ≈1.2×10-3 in spite of the strong decrease of the quantum efficiency.
RESUMO
Atomically precise Au nanoclusters (NCs) with discrete energy levels can be used as photosensitizers for CO2 reduction. However, tight ligand capping of Au NCs hinders CO2 adsorption on its active sites. Here, a new hybrid material is obtained by anchoring of thiol functionalized terpyridine metal complexes (metal=Ru, Ni, Fe, Co) on Au NCs by ligand exchange reactions (LERs). The anchoring of Ru and Ni complexes on Au25 NC (Au25 -Ru and Au25 -Ni) leads to adequate CO2 to CO conversion for photocoupled electrocatalytic CO2 reduction (PECR) in terms of high selectivity, with Faradaic efficiency of CO (FECO ) exceeding 90 % in a wide potential range, remarkable activity (CO production rate up to two times higher than that for pristine Au25 PET18 ) and extremely large turnover frequencies (TOFs, 63012â h-1 at -0.97â V for Au25 -Ru and 69989â h-1 at -1.07â V vs. RHE for Au25 -Ni). Moreover, PECR stability test indicates the excellent long-term stability of the modified NCs in contrast with pristine Au NCs. The present approach offers a novel strategy to enhance PECR activity and selectivity, as well as to improve the stability of Au NCs under light illumination, which paves the way for highly active and stable Au NCs catalysts.
RESUMO
The divergent synthesis of two indane polyketides of the indidene family, namely (±)-indidene A (11 steps, 1.7 %) and (+)-indidene C (13 steps, 1.3 %), is reported. The synthesis of the trans-configured common indane intermediate was enabled by palladium(0)-catalyzed methylene C(sp3 )-H arylation, which was performed in both racemic and enantioselective (e.r. 99 : 1) modes. Further elaboration of this common intermediate by nickel-catalyzed dehydrogenative coupling allowed the rapid installation of the aroyl moiety of (±)-indidene A. In parallel, the biphenyl system of (±)- and (+)-indidene C was constructed by Suzuki-Miyaura coupling. These investigations led us to revise the structures of indidenes B and C.
RESUMO
The synthesis of molecular host-guest complexes with enhanced performance, relative to those of their components, is a central theme in supramolecular chemistry. Here we explore a host-guest system consisting of an atomically precise gold nanocluster bound inside a zinc porphyrin nanoring. UV-vis absorption and fluorescence titrations with different sized nanorings revealed strong binding between a pyridinethiol-coated Au25 nanocluster and a nanoring consisting of six zinc porphyrin units, and complexation is confirmed by mass spectrometry. Formation of this assembly enhances the stability of the gold nanocluster. The host-guest complex also exhibits remarkable activity and selectivity for photochemical CO2 to CO conversion and singlet oxygen generation.
RESUMO
Atomically precise Au25 nanoclusters have garnered significant interest in the field of heterogeneous catalysis due to their remarkable activity and selectivity. However, for the extensively studied reaction of low-temperature CO oxidation, their performance has not been competitive compared to other known gold nanocatalysts. To address this, we deposited Au25(SR)18 (R = CH2CH2Ph) nanoclusters onto a manganese oxide support (Au25/MnO2), resulting in a very stable and highly active catalyst. By optimizing the pretreatment temperature, we were able to significantly enhance the performance of the Au25/MnO2 catalyst, which outperformed most other gold catalysts. Impressively, 100% conversion of CO was achieved at temperatures as low as -50 °C, with 50% conversion being reached below -70 °C. Furthermore, the existence of ligands could also influence the negative apparent activation energy observed at intermediate temperatures. Analysis using X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), and X-ray diffraction (XRD) techniques indicated that the Au25 nanoclusters remained stable on the catalyst surface even after pretreatment at high temperatures. In-situ modulation excitation spectroscopy (MES) spectra also confirmed that the Au cluster was the active site for CO oxidation, highlighting the potential of atomically precise Au25 nanoclusters as primary active sites at very low temperatures.
RESUMO
Despite enormous progress and improvement in photocatalytic CO2 reduction reaction (CO2 RR), the development of photocatalysts that suppress H2 evolution reaction (HER), during CO2 RR, remains still a challenge. Here, new insight is presented for controllable CO2 RR selectivity by tuning the architecture of the photocatalyst. Au/carbon nitride with planar structure (p Au/CN) showed high activity for HER with 87% selectivity. In contrast, the same composition with a yolk@shell structure (Y@S Au@CN) exhibited high selectivity of carbon products by suppressing the HER to 26% under visible light irradiation. Further improvement for CO2 RR activity was achieved by a surface decoration of the yolk@shell structure with Au25 (PET)18 clusters as favorable electron acceptors, resulting in longer charge separation in Au@CN/Auc Y@S structure. Finally, by covering the structure with graphene layers, the designed catalyst maintained high photostability during light illumination and showed high photocatalytic efficiency. The optimized Au@CN/Auc /G Y@S structure displays high photocatalytic CO2 RR selectivity of 88%, where the CO and CH4 generations during 8 h are 494 and 198 µmol/gcat., respectively. This approach combining architecture engineering and composition modification provides a new strategy with improved activity and controllable selectivity toward targeting applications in energy conversion catalysis.
RESUMO
Recently the focus of the Langmuir-Blodgett technique as a method of choice to transfer monolayers from the air/water interface onto solid substrates in a controllable fashion has been shifting toward purely hydrophobic gold and silver nanoparticles. The fundamental interactions between particles that become relevant in the absence of polar groups range from dispersive attractions from the metal cores and repulsions between ligand shells to weaker entropic factors. The layer evolution is explored, starting with interfacial self-assembly upon solution spreading and domain and circular island formation, which subsequently merge into a complete monolayer and finally form multilayers or macroscopic wrinkles. Moreover, structural properties such as the core:ligand size ratio are investigated in the context of dispersive forces, whereby the nanoparticles with small cores and long ligands tend not to aggregate sufficiently to produce continuous films, those with large cores and short ligands were found to aggregate irreversibly, and those in between the two extremes were concluded to be able to form highly organized crystalline films. Similarly, the characteristics of the spreading solution such as the concentration and the solvent type crucially influence the film crystallinity, with the deciding factor being the degree of affinity between the capping ligand and the solvent used for spreading. Finally, the most common strategies employed to enhance the mechanical stability of the metal nanoparticle films along with the recent attempts to functionalize the particles in attempts to improve their applicability in the industry are summarized and evaluated in relation to their future prospects. One of the objectives of this feature article is to elucidate the differences between hydrophobic metal nanoparticles and typical amphiphilic molecules that the majority of the literature in the field describes and to familiarize the reader with the knowledge required to design Langmuir-Blodgett nanoparticle systems as well as the strategies to improve existing ones.
RESUMO
Carbamate is an emerging class of a polymer backbone for constructing sequence-defined, abiotic polymers. It is expected that new functional materials can be de novo designed by controlling the primary polycarbamate sequence. While amino acids have been actively studied as building blocks for protein folding and peptide self-assembly, carbamates have not been widely investigated from this perspective. Here, we combined infrared (IR), vibrational circular dichroism (VCD), and nuclear magnetic resonance (NMR) spectroscopy with density functional theory (DFT) calculations to understand the conformation of carbamate monomer units in a nonpolar, aprotic environment (chloroform). Compared with amino acid building blocks, carbamates are more rigid, presumably due to the extended delocalization of π-electrons on the backbones. Cis configurations of the amide bond can be energetically stable in carbamates, whereas peptides often assume trans configurations at low energies. This study lays an essential foundation for future developments of carbamate-based sequence-defined polymer material design.
RESUMO
Knowledge of the reaction mechanism is key for rational catalyst improvement. Traditionally mechanistic studies focus on structure and the reaction conditions like temperature, pH, pressure, etc., whereas the time dimension is often overlooked. Here, we demonstrate the influence of time on the mechanism of a catalytic reaction. A dual catalytic mechanism was identified for the CO oxidation over Au/TiO2 by time-resolved infrared spectroscopy coupled with modulation excitation spectroscopy. During the first seconds, CO on the gold particles is the only reactive species. As the reaction proceeds, the redox properties of TiO2 dominate the catalytic activity through electronic metal-support interaction (EMSI). CO induces the reduction and reconstruction of TiO2 whereas oxygen leads to its oxidation. The activity of the catalyst follows the spectroscopic signature of the EMSI. These findings demonstrate the power of studying short-time kinetics for mechanistic studies.
RESUMO
A chiral bispyrene macrocycle designed for exclusive intermolecular excimer fluorescence upon aggregation was synthesized by a double hydrothiolation of a bis-enol ether macrocycle followed by intramolecular oxidation of free thiols. Unusually high stereoselectivity was achieved for the thiol-ene additions under templated conditions and Et3 B/O2 radical initiation. After enantiomer separation (chiral stationary phase HPLC), aqueous conditions provoked aggregation. Detailed structural evolution was afforded by ECD/CPL monitoring. Three regimes can be observed and characterized by strong modifications in chiroptical patterns under, at, or above a 70 % H2 O : THF threshold. In luminescence, high glum dissymmetry factors values were obtained, up to 0.022, as well as a double sign inversion of CPL signals during the aggregation, a behavior rationalized by time-dependent density functional theory (TDDFT) calculations. Langmuir layers of enantiopure disulfide macrocycles were formed at the air-water interface and transferred onto solid substrates to afford Langmuir-Blodgett films, which were then studied by AFM and UV/ECD/fluorescence/CPL.
RESUMO
A bidentate chiral dithiol (diBINAS) is utilised to bridge Au25 nanoclusters to form oligomers. Separation by size allows the isolation of fractions that are stable thanks to the bidentate nature of the linker. The structure of the products is elucidated by small-angle X-ray scattering and calculated using density functional theory. Additional structural details are studied by diffusion-ordered nuclear magnetic resonance spectroscopy, transmission electron microscopy and matrix-assisted laser desorption/ionization time of flight mass spectrometry. Significant changes in the optical properties are analysed by UV/Vis and fluorescence spectroscopies, with the latter demonstrating a strong emission enhancement. Furthermore, the emergent chiral characteristics are studied by circular dichroism. Due to the geometry constraints of the nanocluster assemblies, diBINAS can be regarded as a templating molecule, taking a step towards the directed self-assembly of metal clusters.
RESUMO
Noble metal nanoclusters allow for the atomically-precise control of their composition. However, to create nanoclusters with pre-defined optical properties, comprehensive description of their structure-property relation is required. Here, we report the gold atom doping impact on one-photon and two-photon absorption (TPA) and luminescence properties of ligated silver nanoclusters via combined experimental studies and time-dependent density functional theory simulations (TD-DFT). We synthesized a series of Ag25-x Aux (DMBT)18 nanoclusters where x=0, 1 and 5-10. For Ag24 Au1 (DMBT)18 we demonstrate that the presence of the central Au dopant strongly influences linear and non-linear optical properties, increasing photoluminescence quantum yield and two-photon brightness, with respect to undoped silver nanoclusters. With improved TPA and luminescence, atomically-precise AuAg alloys presented in our work can serve as robust luminescent probes e.g. for bioimaging in the second biological window.
RESUMO
High-resolution electrospray ionization ion mobility mass spectrometry has revealed a gas-phase isomer of the ubiquitous, extremely well-studied Au25(SR)18 cluster both in anionic and cationic form. The relative abundance of the isomeric structures can be controlled by in-source activation. The measured collision cross section of the new isomer agrees extremely well with a recent theoretical prediction (Matus, M. F.; et al. Chem. Commun. 2020, 56, 8087) corresponding to a Au25(SR)18- isomer that is energetically close and topologically connected to the known ground-state structure via a simple rotation of the gold core without breaking any Au-S bonds. The results imply that the structural dynamics leading to isomerization of thiolate-protected gold clusters may play an important role in their gas-phase reactions and that isomerization could be controlled by external stimuli.
RESUMO
Langmuir-Blodgett technique is utilized to deposit ultrathin films of Au38 (SC2 H4 Ph)24 nanocluster onto solid surfaces such as mica and silicon. The morphologies of the films transferred at various surface pressures within the mono/bi/trilayer regime are studied by atomic force microscopy (AFM). The time spent on the water surface before the deposition has a decisive effect on the final ordering of nanoclusters within the network and is studied by fast AFM, X-ray reflectivity, and grazing-incidence wide-angle X-ray scattering.
RESUMO
We report a computational study via time-dependent density-functional theory (TDDFT) methods of the photo-absorption spectrum of an atomically precise monolayer-protected cluster (MPC), the Ag24Au(DMBT)18 single negative anion, where DMBT is the 2,4-dimethylbenzenethiolate ligand. The use of efficient simulation algorithms, i.e., the complex polarizability polTDDFT approach and the hybrid-diagonal approximation, allows us to employ a variety of exchange-correlation (xc-) functionals at an affordable computational cost. We are thus able to show, first, how the optical response of this prototypical compound, especially but not exclusively in the absorption threshold (low-energy) region, is sensitive to (1) the choice of the xc-functionals employed in the Kohn-Sham equations and the TDDFT kernel and (2) the choice of the MPC geometry. By comparing simulated spectra with precise experimental photoabsorption data obtained from room temperature down to low temperatures, we then demonstrate how a hybrid xc-functional in both the Kohn-Sham equations and the diagonal TDDFT kernel at the crystallographically determined experimental geometry is able to provide a consistent agreement between simulated and measured spectra across the entire optical region. Single-particle decomposition analysis tools finally allow us to understand the physical reason for the failure of non-hybrid approaches.
RESUMO
Carbonic acid, H2 CO3 , is of fundamental importance in nature both in living and non-living systems. Providing direct spectroscopic evidence for carbonic acid formation is however a challenge. Here we provide clear evidence by inâ situ attenuated total reflection IR spectroscopy combined with modulation excitation spectroscopy and phase-sensitive detection that CO2 adsorption on ice surfaces is accompanied by carbonic acid formation. We demonstrate that carbonic acid can be formed from CO2 on ice in the absence of high-energy irradiation and without protonation by strong acids. The formation of carbonic acid is favored at low temperature, whereas at high temperature it rapidly dissociates to form bicarbonate (HCO3 - ) and carbonate (CO3 2- ). The direct formation of carbonic acid from adsorption of CO2 on ice could play a role in the upper troposphere in cirrus clouds, where all the necessary ingredients to form carbonic acid, that is, low temperature, CO2 gas, and ice, are present.
RESUMO
The enantioselective functionalization of nonactivated enantiotopic secondary C-H bonds is one of the greatest challenges in transition-metal-catalyzed C-H activation proceeding by an inner-sphere mechanism. Such reactions have remained elusive within the realm of Pd0 catalysis. Reported here is the unique reactivity profile of the IBiox ligand family in the Pd0 -catalyzed intramolecular arylation of such nonactivated secondary C-H bonds. Chiral C2 -symmetric IBiox ligands led to high enantioselectivities for a broad range of valuable indane products containing a tertiary stereocenter, as well as the arylation of secondary C-H bonds adjacent to amides. Depending on the amide substituents and upon control of reaction time, indanes containing labile tertiary stereocenters were also obtained with high enantioselectivities. Analysis of the steric maps of the IBiox ligands indicated that the level of enantioselectivity correlates with the difference between the two most occupied and the two less occupied space quadrants, and provided a blueprint for the design of even more efficient ligands.
RESUMO
Ligand protected copper nanoclusters with precise compositions have attracted considerable attention due to their unique photoluminescent properties. However, the acquisition of structural information, knowledge of the factors affecting the stability, and high quantum yields are prerequisites for assessing their applications in biomedicine as fluorescent contrast agents, biosensors, and probes for cells. Despite all the effort, only finite examples of single crystal structures of CuNCs are reported. Herein, we report the phosphine-free synthesis and structure determination of 2-PET protected CuNCs. The structure analysis established by single crystal X-ray diffraction reveals the formation of binary Cu74S15(2-PET)45 sulfide cluster. A similar phenomenon has been observed for several other chalcogenide-bridged copper clusters. The synthesized cluster possesses a rod-like structure, protected with 45 thiol ligands on the surface. Fifteen independent bridged-sulfur atoms couple to the copper atoms inside the core. Calculations for both a neutral and negatively charged cluster showed no major differences in their geometrical structures. Further analysis of frontier MO levels of the closed-shell anion predicts the HOMO-LUMO transition to be intramolecular L7 â L1 charge transfer, where "L7" and "L1" abbreviations refer to the corresponding sulfur layer in the structure. For the neutral cluster, the calculated spin density is delocalized over the two moieties. On the basis of TDDFT+TB calculations, the onset of the measured absorption spectrum could be satisfactorily reproduced.
RESUMO
A surface extract of the aerial parts of Salvia tingitana afforded a nor-sesterterpenoid (1) and eight new sesterterpenoids (2-̵9), along with five known sesterterpenoids, five labdane and one abietane diterpenoid, one sesquiterpenoid, and four flavonoids. The structures of the new compounds were established by 1D and 2D NMR spectroscopy, HRESIMS, and VCD data and Mosher's esters analysis. The antimicrobial activity of compounds was evaluated against 30 human pathogens including 27 clinical strains and three isolates of marine origin for their possible implications on human health. The methyl ester of salvileucolide (10), salvileucolide-6,23-lactone (11), sclareol (15), and manool (17) were the most active against Gram-positive bacteria. The compounds were also tested for the inhibition of ATP production in purified mammalian rod outer segments. Terpenoids 10, 11, 15, and 17 inhibited ATP production, while only 17 inhibited also ATP hydrolysis. Molecular modeling studies confirmed the capacity of 17 to interact with mammalian ATP synthase. A significant reduction of ATP production in the presence of 17 was observed in Enterococcus faecalis and E. faecium isolates.
Assuntos
Abietanos/farmacologia , Antibacterianos/farmacologia , Diterpenos/farmacologia , Abietanos/química , Abietanos/isolamento & purificação , Trifosfato de Adenosina/química , Antibacterianos/isolamento & purificação , Diterpenos/química , Diterpenos/isolamento & purificação , Enterococcus faecalis/efeitos dos fármacos , Flavonoides/farmacologia , Humanos , Lactonas/química , Estrutura Molecular , Componentes Aéreos da Planta/química , Salvia/químicaRESUMO
Over recent years, the field of thiolate-protected gold nanoclusters has made remarkable progress. The successful determination of the structure of some of these clusters by X-ray crystallography was a milestone in this field. X-ray crystallography is arguably the most important technique in the field up to now, and it enabled the study of structure evolution as a function of cluster size. It also shed light on the structure of the Au-S interface. Recently, it has been realized that thiolate-protected gold clusters are very dynamic systems. Metal atoms and ligands can exchange easily between clusters. Furthermore, the adsorbed ligands bear conformational dynamics. Such dynamic effects call for experimental methods that can cope with it. Future efforts in this field will be directed toward applications of thiolate-protected clusters, and many of them will rely on dissolved clusters. Therefore, structure determination in solution is an important issue, though it is very challenging. The structure of the metal core and the Au-S interface is not expected to change in solution with respect to the crystal. However, the structure of the adsorbed ligand itself is sensitive to the environment and may be different in the solid state and in solution, as has been shown in fact in the past. It is this (dynamic) structure of the ligand that determines the interaction between the cluster and its environment, which is crucial, for example, for sensing applications. Vibrational spectroscopy is a promising technique to characterize thiolate-protected clusters in different environments. A vibrational spectrum is sensitive to structure (conformation) although this information is often "hidden" in the spectrum, requiring detailed analysis and support from theory to be deciphered. Compared to other techniques like UV-vis spectroscopy and mass spectrometry, vibrational spectroscopy was not extensively used in the field of thiolate-protected clusters, but we believe that the technique will be very valuable for the future developments in the field. We have used vibrational spectroscopy to investigate thiolate-protected gold clusters for mainly two lines of research. In the first, we studied in detail the low energy region of the vibrational spectrum, in particular the Au-S vibrational modes, in order to understand the structure sensitivity. It emerges that the Au-S vibrational spectrum is indeed sensitive to the structure of the interface but also to other factors, especially the organic part of the thiol, in a complex way. The ability to directly correlate structure, from X-ray crystallography, and vibrational spectra for thiolate-protected clusters, should lead to a database that will help in the future the structure determination of the Au-S interface by vibrational spectroscopy for systems where direct structure determination is not possible, for example, for flat surfaces. A second line of research focused on the determination of the structure of the adsorbed ligands for dissolved clusters. Such information is mostly extracted by the comparison of theoretical and calculated spectra for different conformers. In this respect, vibrational circular dichroism (VCD) is particularly powerful as it strongly depends on the conformation, more than conventional infrared spectroscopy. VCD can be applied to chiral nonracemic compounds, and it is a sensitive probe for chirality. Using this method, it was possible to demonstrate that a cluster can transfer its chirality to achiral thiolate ligands. In this Account, we summarize the possibilities and challenges of vibrational spectroscopy in the field of thiolate-protected clusters.