Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Biol Int ; 46(4): 523-534, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34937124

RESUMO

N-acyl homoserine lactones (AHLs) belong to the class of bacterial quorum sensing signal molecules involved in distance signal transduction between Gram-negative bacteria colonizers of the rhizosphere, as well as bacteria and plants. AHLs synchronize the activity of genes from individual cells, allowing the bacterial population to act as a multicellular organism, and establish a symbiotic or antagonistic relationship with the host plant. Although the effect of AHLs on plants has been studied for more than ten years, the mechanisms of plant perception of AHL signals are not fully understood. The specificity of the reactions caused by AHL indicates the existence of appropriate mechanisms for their perception by plants. In the current review, we summarize available data on the molecular mechanisms of AHL-signal perception in plants, its effect on plant growth, development, and stress resistance. We describe the latest research demonstrating direct (on plants) and indirect (on rhizosphere microflora) effects of AHLs, as well as the prospects of using these compounds in biotechnology to increase plant resistance to biotic and abiotic stresses.


Assuntos
Acil-Butirolactonas , Percepção de Quorum , Percepção , Plantas , Percepção de Quorum/fisiologia
2.
Cell Biol Int ; 45(2): 258-272, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33200493

RESUMO

Heavy metals (HMs) are among the main environmental pollutants that can enter the soil, water bodies, and the atmosphere as a result of natural processes (weathering of rocks, volcanic activity), and also as a result of human activities (mining, metallurgical and chemical industries, transport, application of mineral fertilizers). Plants counteract the HMs stresses through morphological and physiological adaptations, which are imparted through well-coordinated molecular mechanisms. New approaches, which include transcriptomics, genomics, proteomics, and metabolomics analyses, have opened the paths to understand such complex networks. This review sheds light on molecular mechanisms included in plant adaptive and defense responses during metal stress. It is focused on the entry of HMs into plants, its transport and accumulation, effects on the main physiological processes, gene expressions included in plant adaptive and defense responses during HM stress. Analysis of new data allowed the authors to conclude that the most important mechanism of HM tolerance is extracellular and intracellular HM sequestration. Organic anions (malate, oxalate, etc.) provide extracellular sequestration of HM ions. Intracellular HM sequestration depends not only on a direct binding mechanism with different polymers (pectin, lignin, cellulose, hemicellulose, etc.) or organic anions but also on the action of cellular receptors and transmembrane transporters. We focused on the functioning chloroplasts, mitochondria, and the Golgi complex under HM stress. The currently known molecular mechanisms of plant tolerance to the toxic effects of HMs are analyzed.


Assuntos
Poluentes Ambientais/metabolismo , Metais Pesados/metabolismo , Plantas/metabolismo , Adaptação Biológica , Biodegradação Ambiental , Estresse Fisiológico
3.
PLoS One ; 14(2): e0209460, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30802259

RESUMO

Several model plants are known to respond to bacterial quorum sensing molecules with altered root growth and gene expression patterns and induced resistance to plant pathogens. These compounds may represent novel elicitors that could be applied as seed primers to enhance cereal crop resistance to pathogens and abiotic stress and to improve yields. We investigated whether the acyl-homoserine lactone N-hexanoyl-L-homoserine lactone (C6-HSL) impacted winter wheat (Triticum aestivum L.) seed germination, plant development and productivity, using two Ukrainian varieties, Volodarka and Yatran 60, in both in vitro experiments and field trials. In vitro germination experiments indicated that C6-HSL seed priming had a small but significant positive impact on germination levels (1.2x increase, p < 0.0001), coleoptile and radicle development (1.4x increase, p < 0.0001). Field trials over two growing seasons (2015-16 and 2016-17) also demonstrated significant improvements in biomass at the tillering stage (1.4x increase, p < 0.0001), and crop structure and productivity at maturity including grain yield (1.4-1.5x increase, p < 0.0007) and quality (1.3x increase in good grain, p < 0.0001). In some cases variety effects were observed (p ≤ 0.05) suggesting that the effect of C6-HSL seed priming might depend on plant genetics, and some benefits of priming were also evident in F1 plants grown from seeds collected the previous season (p ≤ 0.05). These field-scale findings suggest that bacterial acyl-homoserine lactones such as C6-HSL could be used to improve cereal crop growth and yield and reduce reliance on fungicides and fertilisers to combat pathogens and stress.


Assuntos
4-Butirolactona/análogos & derivados , Acil-Butirolactonas/metabolismo , Desenvolvimento Vegetal/fisiologia , Percepção de Quorum/fisiologia , Sementes/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , 4-Butirolactona/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Biomassa , Produção Agrícola/métodos , Germinação/fisiologia , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa