Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Pharm Res ; 40(2): 431-447, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36151444

RESUMO

BACKGROUND: The development of generic ophthalmic drug products is challenging due to the complexity of the ocular system, and a lack of sensitive testing to evaluate the interplay of physiology with ophthalmic formulations. While measurements of drug concentration at the site of action in humans are typically sparse, these measurements are more easily obtained in rabbits. The purpose of this study is to demonstrate the utility of an ocular physiologically based pharmacokinetic (PBPK) model for translation of ocular exposure from rabbit to human. METHOD: The Ocular Compartmental Absorption and Transit (OCAT™) model within GastroPlus® v9.8.2 was used to build PBPK models for levofloxacin (Lev), moxifloxacin (Mox), and gatifloxacin (Gat) ophthalmic solutions. in the rabbit eye. The models were subsequently used to predict Lev, Mox, and Gat exposure after ocular solution administrations in humans. Drug-specific parameters were used as fitted and validated in the rabbit OCAT model. The physiological parameters were scaled to match human ocular physiology. RESULTS: OCAT model simulations for rabbit well described the observed concentrations in the eye compartments following Lev, Mox, and Gat solution administrations of different doses and various administration schedules. The clinical ocular exposure following ocular administration of Lev, Mox, and Gat solutions at different doses and various administration schedules was well predicted. CONCLUSION: Even though additional case studies for different types of active pharmaceutical ingredients (APIs) and formulations will be needed, the current study represents an important step in the validation of the extrapolation method to predict human ocular exposure for ophthalmic drug products using PBPK models.


Assuntos
Olho , Levofloxacino , Animais , Humanos , Coelhos , Soluções Oftálmicas , Modelos Biológicos
2.
Pharm Res ; 40(4): 961-975, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36959411

RESUMO

INTRODUCTION: Although the eye is directly accessible on the surface of the human body, drug delivery can be extremely challenging due to the presence of multiple protective barriers in eye tissues. Researchers have developed complex formulation strategies to overcome these barriers to ophthalmic drug delivery. Current development strategies rely heavily on in vitro experiments and animal testing to predict human pharmacokinetics (PK) and pharmacodynamics (PD). OBJECTIVE: The primary objective of the study was to develop a high-fidelity PK/PD model of the anterior eye for topical application of ophthalmic drug products. METHODS: Here, we present a physiologically-based in silico approach to predicting PK and PD in rabbits after topical administration of ophthalmic products. A first-principles based approach was used to describe timolol dissolution, transport, and distribution, including consideration of ionized transport, following topical instillation of a timolol suspension. RESULTS: Using literature transport and response parameters, the computational model described well the concentration-time and response-time profiles in rabbit. Comparison of validated rabbit model results and extrapolated human model results demonstrate observable differences in the distribution of timolol at multiple time points. CONCLUSION: This modeling framework provides a tool for model-based prediction of PK in eye tissues and PD after topical ophthalmic drug administration to the eyes.


Assuntos
Olho , Timolol , Animais , Humanos , Coelhos , Timolol/farmacocinética , Soluções Oftálmicas/farmacocinética , Córnea , Administração Tópica
3.
Pharm Res ; 38(12): 1991-2001, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34950975

RESUMO

Complex generics are generic versions of drug products that generally have complex active ingredients, complex formulations, complex routes of delivery, complex dosage forms, are complex drug-device combination products, or have other characteristics that can make it complex to demonstrate bioequivalence or to develop as generics. These complex products (i.e. complex generics) are an important element of the United States (U.S.) Food and Drug Administration's (FDA's) Generic Drug User Fee Amendments (GDUFA) II Commitment Letter. The Center for Research on Complex Generics (CRCG) was formed by a grant from the FDA to address challenges associated with the development of complex generics. To understand these challenges, the CRCG conducted a "Survey of Scientific Challenges in the Development of Complex Generics". The three main areas of questioning were directed toward which (types of) complex products, which methods of analysis to support a demonstration of bioequivalence, and which educational topics the CRCG should prioritize. The survey was open to the public on a website maintained by the CRCG. Regarding complex products, the top three selections were complex injectables, formulations, and nanomaterials; drug-device combination products; and inhalation and nasal products. Regarding methods of analysis, the top three selections were locally-acting physiologically-based pharmacokinetic modeling; oral absorption models and bioequivalence; and data analytics and machine learning. Regarding educational topics, the top three selections were complex injectables, formulations, and nanomaterials; drug-device combination products; and data analytics, including quantitative methods and modeling & simulation. These survey results will help prioritize the CRCG's initial research and educational initiatives.


Assuntos
Medicamentos Genéricos , Educação em Farmácia/tendências , Pesquisa Farmacêutica/tendências , Aprovação de Drogas , Educação em Farmácia/estatística & dados numéricos , Pesquisa Farmacêutica/estatística & dados numéricos , Inquéritos e Questionários/estatística & dados numéricos , Equivalência Terapêutica , Estados Unidos , United States Food and Drug Administration
4.
Pharm Res ; 37(12): 245, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33215336

RESUMO

PURPOSE: The purpose of this study is to show how the Ocular Compartmental Absorption & Transit (OCAT™) model in GastroPlus® can be used to characterize ocular drug pharmacokinetic performance in rabbits for ointment formulations. METHODS: A newly OCAT™ model developed for fluorometholone, as well as a previously verified model for dexamethasone, were used to characterize the aqueous humor (AH) concentration following the administration of multiple ointment formulations to rabbit. The model uses the following parameters: application surface area (SA), a fitted application time, and the fitted Higuchi release constant to characterize the rate of passage of the active pharmaceutical ingredient from the ointment formulations into the tears in vivo. RESULTS: Parameter sensitivity analysis was performed to understand the impact of ointment formulation changes on ocular exposure. While application time was found to have a significant impact on the time of maximal concentration in AH, both the application SA and the Higuchi release constant significantly influenced both the maximum concentration and the ocular exposure. CONCLUSIONS: This initial model for ointment ophthalmic formulations is a first step to better understand the interplay between physiological factors and ophthalmic formulation physicochemical properties and their impact on in vivo ocular drug pharmacokinetic performance in rabbits.


Assuntos
Dexametasona/farmacocinética , Olho/metabolismo , Fluormetolona/farmacocinética , Glucocorticoides/farmacocinética , Modelos Biológicos , Absorção Ocular , Administração Oftálmica , Animais , Humor Aquoso/metabolismo , Simulação por Computador , Dexametasona/administração & dosagem , Fluormetolona/administração & dosagem , Glucocorticoides/administração & dosagem , Pomadas , Coelhos
5.
J Aerosol Sci ; 146: 105581, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32346183

RESUMO

This study numerically investigates the effect of hygroscopicity on transport and deposition of particles in severe asthmatic lungs with distinct airway structures. The study human subjects were selected from two imaging-based severe asthmatic clusters with one characterized by non-constricted airways and the other by constricted airways in the lower left lobe (LLL). We compared the deposition fractions of sodium chloride (NaCl) particles with a range of aerodynamic diameters (1-8 µm) in cluster archetypes under conditions with and without hygroscopic growth. The temperature and water vapor distributions in the airways were simulated with an airway wall boundary condition that accounts for variable temperature and water vapor evaporation at the interface between the lumen and the airway surface liquid layer. On average, the deposition fraction increased by about 6% due to hygroscopic particle growth in the cluster subjects with constricted airways, while it increased by only about 0.5% in those with non-constricted airways. The effect of particle growth was most significant for particles with an initial diameter of 2 µm in the cluster subjects with constricted airways. The effect diminished with increasing particle size, especially for particles with an initial diameter larger than 4 µm. This suggests the necessity to differentiate asthmatic subjects by cluster in engineering the aerosol size for tailored treatment. Specifically, the treatment of severe asthmatic subjects who have constricted airways with inhalation aerosols may need submicron-sized hygroscopic particles to compensate for particle growth, if one targets for delivering to the peripheral region. These results could potentially inform the choice of particle size for inhalational drug delivery in a cluster-specific manner.

7.
Biopharm Drug Dispos ; 37(9): 550-560, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27723114

RESUMO

Bupropion and its three active metabolites exhibit clinical efficacy in the treatment of major depression, seasonal depression and smoking cessation. The pharmacokinetics of bupropion in humans is highly variable. It is not known if there are any non-reported metabolites formed in humans in addition to the three known active metabolites. This paper reports newly identified and non-reported metabolites of bupropion in human plasma samples. Human subjects were dosed with a single oral dose of 75 mg of an immediate release bupropion HCl tablet. Plasma samples were collected and analysed by LC-MS/MS at 0, 6 and 24 h. Two non-reported metabolites (M1 and M3) were identified with mass-to-charge (m/z) ratios of 276 (M1, hydration of bupropion) and 258 (M3, hydroxylation of threo/erythrohydrobupropion) from human plasma in addition to the known hydroxybupropion, threo/erythrohydrobupropion and the glucuronidation products of the major metabolites (M2 and M4-M7). These new metabolites may provide new insight and broaden the understanding of bupropion's variability in clinical pharmacokinetics. © 2016 The Authors Biopharmaceutics & Drug Disposition Published by John Wiley & Sons Ltd.


Assuntos
Antidepressivos de Segunda Geração/sangue , Bupropiona/análogos & derivados , Bupropiona/sangue , Espectrometria de Massas por Ionização por Electrospray/métodos , Antidepressivos de Segunda Geração/farmacologia , Bupropiona/farmacologia , Cromatografia Líquida/métodos , Humanos
8.
Drug Metab Dispos ; 43(7): 1019-27, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25904761

RESUMO

Bupropion's metabolism and the formation of hydroxybupropion in the liver by cytochrome P450 2B6 (CYP2B6) has been extensively studied; however, the metabolism and formation of erythro/threohydrobupropion in the liver and intestine by carbonyl reductases (CR) has not been well characterized. The purpose of this investigation was to compare the relative contribution of the two metabolism pathways of bupropion (by CYP2B6 and CR) in the subcellular fractions of liver and intestine and to identify the CRs responsible for erythro/threohydrobupropion formation in the liver and the intestine. The results showed that the liver microsome generated the highest amount of hydroxybupropion (Vmax = 131 pmol/min per milligram, Km = 87 µM). In addition, liver microsome and S9 fractions formed similar levels of threohydrobupropion by CR (Vmax = 98-99 pmol/min per milligram and Km = 186-265 µM). Interestingly, the liver has similar capability to form hydroxybupropion (by CYP2B6) and threohydrobupropion (by CR). In contrast, none of the intestinal fractions generate hydroxybupropion, suggesting that the intestine does not have CYP2B6 available for metabolism of bupropion. However, intestinal S9 fraction formed threohydrobupropion to the extent of 25% of the amount of threohydrobupropion formed by liver S9 fraction. Enzyme inhibition and Western blots identified that 11ß-dehydrogenase isozyme 1 in the liver microsome fraction is mainly responsible for the formation of threohydrobupropion, and in the intestine AKR7 may be responsible for the same metabolite formation. These quantitative comparisons of bupropion metabolism by CR in the liver and intestine may provide new insight into its efficacy and side effects with respect to these metabolites.


Assuntos
Oxirredutases do Álcool/metabolismo , Antidepressivos de Segunda Geração/metabolismo , Bupropiona/metabolismo , Mucosa Intestinal/metabolismo , Fígado/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Oxirredutases do Álcool/antagonistas & inibidores , Aldeído Redutase/metabolismo , Biotransformação , Inibidores Enzimáticos/farmacologia , Humanos , Técnicas In Vitro , Intestinos/enzimologia , Cinética , Fígado/enzimologia , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo , Especificidade de Órgãos , Frações Subcelulares/metabolismo
9.
CPT Pharmacometrics Syst Pharmacol ; 13(2): 247-256, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38130031

RESUMO

Proton pump inhibitors (PPIs) can affect the release of drugs from their dosage forms in vivo by elevating the gastric pH. Our recent clinical study has demonstrated that drug-drug interactions (DDIs) exist between a PPI, omeprazole, and nifedipine extended-release formulations, where systemic exposure of nifedipine was increased in subjects after multiple-dose pretreatment of omeprazole. However, the mechanism of the observed DDIs between omeprazole and nifedipine has not been well-understood, as the DDI may also be mediated through CYP3A4 enzyme inhibition in addition to the elevated gastric pH caused by omeprazole. This study used physiologically-based pharmacokinetic (PBPK) modeling and simulations to investigate the underlying mechanism of these complex DDIs. A formulation exhibiting differences in in vitro dissolution across physiological pH range and another formulation where pH does not impact dissolution appreciably (e.g., an osmotic pump) were chosen to characterize the potential impact of pH. The PBPK models incorporated two-stage in vitro release profiles via US Pharmacopeia 2 apparatus. PBPK simulations suggest that the elevated gastric pH following multiple-dose administration of omeprazole has a minimal effect on nifedipine pharmacokinetics (PKs), whereas CYP3A4-mediated DDI is likely the main driver to the observed change of nifedipine PKs in the presence of omeprazole. Compared to the osmotic formulation, the slightly increased exposure of nifedipine can be accounted for by the enhanced drug release in the pH-dependent formulation. The reported model-based approach may be useful in DDI risk assessments, product formulation designs, and bioequivalence evaluations.


Assuntos
Nifedipino , Omeprazol , Humanos , Nifedipino/química , Nifedipino/farmacocinética , Omeprazol/farmacologia , Citocromo P-450 CYP3A/metabolismo , Interações Medicamentosas , Liberação Controlada de Fármacos , Administração Oral
10.
AAPS J ; 26(1): 12, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177638

RESUMO

Evidence shows that there is an increasing use of modeling and simulation to support product development and approval for complex generic drug products in the USA, which includes the use of mechanistic modeling and model-integrated evidence (MIE). The potential for model reuse was the subject of a workshop session summarized in this review, where the session included presentations and a panel discussion from members of the U.S. Food and Drug Administration (FDA), academia, and the generic drug product industry. Concepts such as platform performance assessment and MIE standardization were introduced to provide potential frameworks for model reuse related to mechanistic models and MIE, respectively. The capability of models to capture formulation and product differences was explored, and challenges with model validation were addressed for drug product classes including topical, orally inhaled, ophthalmic, and long-acting injectable drug products. An emphasis was placed on the need for communication between FDA and the generic drug industry to continue to foster maturation of modeling and simulation that may support complex generic drug product development and approval, via meetings and published guidance from FDA. The workshop session provided a snapshot of the current state of modeling and simulation for complex generic drug products and offered opportunities to explore the use of such models across multiple drug products.


Assuntos
Medicamentos Genéricos , Estados Unidos , Equivalência Terapêutica , Preparações Farmacêuticas , Simulação por Computador , United States Food and Drug Administration
11.
Nucleic Acids Res ; 39(19): 8651-64, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21737428

RESUMO

The design of synthetic gene networks requires an extensive genetic toolbox to control the activities and levels of protein components to achieve desired cellular functions. Recently, a novel class of RNA-based control modules, which act through post-transcriptional processing of transcripts by directed RNase III (Rnt1p) cleavage, were shown to provide predictable control over gene expression and unique properties for manipulating biological networks. Here, we increase the regulatory range of the Rnt1p control elements, by modifying a critical region for enzyme binding to its hairpin substrates, the binding stability box (BSB). We used a high throughput, cell-based selection strategy to screen a BSB library for sequences that exhibit low fluorescence and thus high Rnt1p processing efficiencies. Sixteen unique BSBs were identified that cover a range of protein expression levels, due to the ability of the sequences to affect the hairpin cleavage rate and to form active cleavable complexes with Rnt1p. We further demonstrated that the activity of synthetic Rnt1p hairpins can be rationally programmed by combining the synthetic BSBs with a set of sequences located within a different region of the hairpin that directly modulate cleavage rates, providing a modular assembly strategy for this class of RNA-based control elements.


Assuntos
Regulação Fúngica da Expressão Gênica , RNA/química , Sequências Reguladoras de Ácido Ribonucleico , Ribonuclease III/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Biblioteca Gênica , Ensaios de Triagem em Larga Escala , RNA/metabolismo
12.
Nucleic Acids Res ; 39(12): 5299-311, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21355039

RESUMO

The programming of cellular networks to achieve new biological functions depends on the development of genetic tools that link the presence of a molecular signal to gene-regulatory activity. Recently, a set of engineered RNA controllers was described that enabled predictable tuning of gene expression in the yeast Saccharomyces cerevisiae through directed cleavage of transcripts by an RNase III enzyme, Rnt1p. Here, we describe a strategy for building a new class of RNA sensing-actuation devices based on direct integration of RNA aptamers into a region of the Rnt1p hairpin that modulates Rnt1p cleavage rates. We demonstrate that ligand binding to the integrated aptamer domain is associated with a structural change sufficient to inhibit Rnt1p processing. Three tuning strategies based on the incorporation of different functional modules into the Rnt1p switch platform were demonstrated to optimize switch dynamics and ligand responsiveness. We further demonstrated that these tuning modules can be implemented combinatorially in a predictable manner to further improve the regulatory response properties of the switch. The modularity and tunability of the Rnt1p switch platform will allow for rapid optimization and tailoring of this gene control device, thus providing a useful tool for the design of complex genetic networks in yeast.


Assuntos
Aptâmeros de Nucleotídeos/química , Regulação da Expressão Gênica , Ribonuclease III/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Aptâmeros de Nucleotídeos/metabolismo , Engenharia Genética , Ligantes , Teofilina/farmacologia
13.
Int J Pharm ; 636: 122805, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36898619

RESUMO

This study aims to assess the effects of varying an ethanol co-solvent on the deposition of drug particles in severe asthmatic subjects with distinct airway structures and lung functions using computational fluid dynamics. The subjects were selected from two quantitative computed tomography imaging-based severe asthmatic clusters, differentiated by airway constriction in the left lower lobe. Drug aerosols were assumed to be generated from a pressurized metered-dose inhaler (MDI). The aerosolized droplet sizes were varied by increasing the ethanol co-solvent concentration in the MDI solution. The MDI formulation consists of 1,1,2,2-tetrafluoroethane (HFA-134a), ethanol, and beclomethasone dipropionate (BDP) as the active pharmaceutical ingredient. Since HFA-134a and ethanol are volatile, both substances evaporate rapidly under ambient conditions and trigger condensation of water vapor, increasing the size of aerosols that are predominantly composed of water and BDP. The average deposition fraction in intra-thoracic airways for severe asthmatic subjects with (or without) airway constriction increased from 37%±12 to 53.2%±9.4 (or from 20.7%± 4.6 to 34.7%±6.6) when the ethanol concentration was increased from 1 to 10%wt/wt. However, when the ethanol concentration was further increased from 10 to 20%wt/wt, the deposition fraction decreased. This indicates the importance of selecting appropriate co-solvent amounts during drug formulation development for the treatment of patients with narrowed airway disease. For severe asthmatic subjects with airway narrowing, the inhaled aerosol may benefit from a low hygroscopic effect by reducing ethanol concentration to penetrate the peripheral region effectively. These results could potentially inform the selection of co-solvent amounts for inhalation therapies in a cluster-specific manner.


Assuntos
Antiasmáticos , Asma , Humanos , Beclometasona , Etanol , Aerossóis e Gotículas Respiratórios , Asma/tratamento farmacológico , Administração por Inalação , Hidrocarbonetos Fluorados , Propelentes de Aerossol , Solventes
14.
Int J Pharm ; 635: 122718, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36781083

RESUMO

Nasal sprays are typically characterized using in vitro spray metrics such as spray cone angle and droplet size distribution. It is currently not clear how these in vitro metrics correlate with regional nasal deposition, and these relationships could help explain the impact of product differences. In this study, the effects of changes in spray cone angle, spray velocity, spray ovality and droplet size distribution on regional nasal deposition were analyzed using a validated computational fluid dynamics model in recently developed adult characteristic nasal airway anatomies. The impact of the spray on the surrounding air phase was included. Results indicated that changes in spray cone angle largely influenced the nasal posterior deposition (PD) of the drug. Changes in the plume ovality and characteristic droplet size moderately influenced PD, but the results were dependent on the insertion conditions and nasal geometry. Changes in spray velocity and uniformity constant of the droplet size distribution had only minimal influence on PD. The rank order of metrics having the greatest to least impact on PD was cone angle ≫ plume ovality ≫ characteristic droplet size ≫ velocity ≫ size distribution uniformity constant. Overall, results from this study established quantitative relationships for predicting expected changes in PD.


Assuntos
Sprays Nasais , Nebulizadores e Vaporizadores , Humanos , Adulto , Administração Intranasal , Aerossóis , Tamanho da Partícula
15.
CPT Pharmacometrics Syst Pharmacol ; 12(5): 631-638, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36851886

RESUMO

For approval, a proposed generic drug product must demonstrate it is bioequivalent (BE) to the reference listed drug product. For locally acting drug products, conventional BE approaches may not be feasible because measurements in local tissues at the sites of action are often impractical, unethical, or cost-prohibitive. Mechanistic modeling approaches, such as physiologically-based pharmacokinetic (PBPK) modeling, may integrate information from drug product properties and human physiology to predict drug concentrations in these local tissues. This may allow clinical relevance determination of critical drug product attributes for BE assessment during the development of generic drug products. In this regard, the Office of Generic Drugs of the US Food and Drug Administration has recently established scientific research programs to accelerate the development and assessment of generic products by utilizing model-integrated alternative BE approaches. This report summarizes the presentations and panel discussion from a public workshop that provided research updates and information on the current state of the use of PBPK modeling approaches to support generic product development for ophthalmic, injectable, nasal, and implant drug products.


Assuntos
Medicamentos Genéricos , Relatório de Pesquisa , Humanos , Medicamentos Genéricos/farmacocinética , Preparações Farmacêuticas , Equivalência Terapêutica
16.
CPT Pharmacometrics Syst Pharmacol ; 12(5): 619-623, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36631942

RESUMO

On September 30 and October 1, 2021, the US Food and Drug Administration (FDA) and the Center for Research on Complex Generics cosponsored a live virtual workshop titled "Regulatory Utility of Mechanistic Modeling to Support Alternative Bioequivalence Approaches." The overall aims of the workshop included (i) engaging the generic drug industry and other involved stakeholders regarding how mechanistic modeling and simulation can support their product development and regulatory submissions; (ii) sharing the current state of mechanistic modeling for bioequivalence (BE) assessment through case studies; (iii) establishing a consensus on best practices for using mechanistic modeling approaches, such as physiologically based pharmacokinetic modeling and computational fluid dynamics modeling, for BE assessment; and (iv) introducing the concept of a Model Master File to improve model sharing between model developers, industry, and the FDA. More than 1500 people registered for the workshop. Based on a postworkshop survey, the majority of participants reported that their fundamental scientific understanding of mechanistic models was enhanced, there was greater consensus on model validation and verification, and regulatory expectations for mechanistic modeling submitted in abbreviated new drug applications were clarified by the workshop.


Assuntos
Medicamentos Genéricos , Estados Unidos , Humanos , Equivalência Terapêutica , Medicamentos Genéricos/farmacocinética , Simulação por Computador , United States Food and Drug Administration
17.
Int J Pharm ; 642: 123183, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37369289

RESUMO

Identifying critical attributes for complex locally acting ophthalmic formulations and establishing in vitro-in vivo correlations can facilitate selection of appropriate thresholds for formulation changes that reflect lack of impact on in vivo performance. In this study the marketed antiglaucoma product Azopt® (1% brinzolamide suspension) and five other brinzolamide formulations varying in particle size distributions and apparent viscosities were topically administered in rabbits, and their ocular pharmacokinetics was determined in multiple ocular tissues. Statistical evaluation with ANOVA showed no significant differences between the formulations in the peak drug concentration (Cmax) in the aqueous humor and iris-ciliary body. As a post-hoc analysis, the within animal and total variability was determined for Cmax in the aqueous humor and iris-ciliary body. Based on the observed variability, we investigated the sample size needed for two types of study designs to observe statistically significant differences in Cmax. For the sample size calculations, assuming both 25% and 50% true differences in Cmax between two formulations, two study designs were compared: paired-eye dosing design (one formulation in one eye and another formulation in the other eye of the same animal at the same time) versus parallel-group design. The number of rabbits needed in the paired-eye dosing design are much lower than in the parallel-group design. For example, when the true difference in aqueous humor Cmax is 25%, nine rabbits are required in the paired-eye design versus seventy rabbits (35 per treatment) in the parallel-group design to observe a statistically significant difference with a power of 80%. Therefore, the proposed paired-eye dosing design is a viable option for the design of pharmacokinetic studies comparing ophthalmic products to determine the impact of formulation differences.


Assuntos
Olho , Sulfonamidas , Animais , Coelhos , Suspensões , Tamanho da Amostra , Humor Aquoso , Soluções Oftálmicas
18.
Mol Syst Biol ; 7: 471, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21364573

RESUMO

Advances in synthetic biology have resulted in the development of genetic tools that support the design of complex biological systems encoding desired functions. The majority of efforts have focused on the development of regulatory tools in bacteria, whereas fewer tools exist for the tuning of expression levels in eukaryotic organisms. Here, we describe a novel class of RNA-based control modules that provide predictable tuning of expression levels in the yeast Saccharomyces cerevisiae. A library of synthetic control modules that act through posttranscriptional RNase cleavage mechanisms was generated through an in vivo screen, in which structural engineering methods were applied to enhance the insulation and modularity of the resulting components. This new class of control elements can be combined with any promoter to support titration of regulatory strategies encoded in transcriptional regulators and thus more sophisticated control schemes. We applied these synthetic controllers to the systematic titration of flux through the ergosterol biosynthesis pathway, providing insight into endogenous control strategies and highlighting the utility of this control module library for manipulating and probing biological systems.


Assuntos
Regulação Fúngica da Expressão Gênica , Biblioteca Gênica , Mapeamento de Interação de Proteínas/métodos , Saccharomyces cerevisiae/genética , Algoritmos , Ergosterol/biossíntese , Engenharia Genética/métodos , Modelos Químicos , Modelos Genéticos , Plasmídeos/genética , Plasmídeos/metabolismo , RNA/metabolismo , RNA Interferente Pequeno/metabolismo , Curva ROC , Ribonuclease III/genética , Ribonuclease III/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Software , Biologia Sintética , Transcrição Gênica
19.
Clin Pharmacol Ther ; 111(5): 1036-1049, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34231211

RESUMO

Physiologically-based pharmacokinetic (PBPK) modeling and simulation provides mechanism-based predictions of the pharmacokinetics of an active ingredient following its administration in humans. Dermal PBPK models describe the skin permeation and disposition of the active ingredient following the application of a dermatological product on the skin of virtual healthy and diseased human subjects. These models take into account information on product quality attributes, physicochemical properties of the active ingredient and skin (patho)physiology, and their interplay with each other. Regulatory and product development decision makers can leverage these quantitative tools to identify factors impacting local and systemic exposure. In the realm of generic drug products, the number of US Food and Drug Administratioin (FDA) interactions that use dermal PBPK modeling to support alternative bioequivalence (BE) approaches is increasing. In this report, we share scientific considerations on the development, verification and validation (V&V), and application of PBPK models within the context of a virtual BE assessment for dermatological drug products. We discuss the challenges associated with model V&V for these drug products stemming from the fact that target-site active ingredient concentrations are typically not measurable. Additionally, there are no established relationships between local and systemic PK profiles, when the latter are quantifiable. To that end, we detail a multilevel model V&V approach involving validation for the model of the drug product of interest coupled with the overall assessment of the modeling platform in use while leveraging in vitro and in vivo data related to local and systemic bioavailability.


Assuntos
Modelos Biológicos , Disponibilidade Biológica , Simulação por Computador , Humanos , Preparações Farmacêuticas , Equivalência Terapêutica
20.
Int J Pharm ; 622: 121858, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35643344

RESUMO

To improve the relationships between commonly conducted in vitro studies for locally-acting nasal spray drug products with in vivo regional deposition, this study developed a set of in vitro adult nasal geometries that captured the range of nasal drug delivery to the region posterior to internal nasal valve (INV), also known as posterior delivery (PD), and evaluated their performance with existing in vivo data. The PD of fluticasone propionate (FP) and fluticasone furoate (FF) in 40 nasal cavities was statistically analyzed to identify three airway models representing the low, mean, and high PD in adults. The models were also externally validated by comparing the in vitro nasal deposition from a different drug product (mometasone furoate (MF)) with the relevant in vivo data. The three selected geometries represented the low, mean, and high PD with multiple nasal sprays. They were verified in terms of reproducibility of in vitro data and validated by showing a reasonable agreement with preexisting in vivo MF PD despite differences in administration and defining the regions. The three models are envisioned to potentially facilitate the development of locally-acting nasal sprays and provide a better understanding of how in vitro metrics relate to in vivo regional nasal deposition.


Assuntos
Sprays Nasais , Nariz , Administração Intranasal , Fluticasona , Furoato de Mometasona , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa